MAJOR SUBDIVISION AMENDMENT APPLICATION

WHITE ROCK TERRACE
TOWN OF CUMBERLAND, ME

Prepared By:
ACORN ENGINEERING, INC.
For:
THE SZANTON COMPANY

APRIL 3, 2023

Section A

Cover Letter/Project Narrative

Cumberland Planning Board
April 3, 2023
Town of Cumberland, Maine
Cumberland, ME 04101

Subject: Town of Cumberland Major Subdivision Application White Rock Terrace Applicant: The Szanton Group

Ms. Nixon:
On behalf of The Stanton Group and the design team, Acorn Engineering, Inc. (Acorn) is resubmitting this application previously approved by the board on December 20, 2022 for the purpose of recording the subdivision plan at the registry.

The accompanying package of materials relate to the proposed affordable senior housing multiplex development on Sky View Drive. A 4.47-acre site has been divided from the existing 25.67 -acre parcel to facilitate the development.

Building Description:

White Rock Terrace is proposed as a 55 -unit apartment building to be located on Sky View Drive in Cumberland. The building will contain 8 two-bedroom units and 47 one-bedroom units. All 55 units will be age-restricted for households whose head is aged $55+$. Additionally, all 55 units will be income restricted for households earning at or below 60% of the area median income. The building will also have indoor bike storage, fitness room, community room, coin-op laundry, rooftop deck and outdoor community space. There will also be two offices for property management staff. There will be weekly hours for both the property manager and a resident services coordinator.

The attached project narrative and attached application materials go into further detail about how this proposal meets the subdivision standards outlined in the Town of Cumberland's Zoning Ordinance.

The amendment application fee of $\$ 150$ is attached to this submission.

Sincerely,

Sam Lebel, P.E.
Project Manager
Acorn Engineering, Inc.

The following documents and drawings will be uploaded onto the City's electronic submission site per the procedure outlined in the application:

Documents:
> Section A: Cover Letter/Project Narrative
$>$ Section B: Major Subdivision Application
$>$ Section C: Right, Title, \& Interest
$>$ Section D: Abutter List
$>$ Section E: Financial \& Technical Capacity
$>$ Section F: Solid Waste Disposal Plan
> Section G: Stormwater Management Report
$>$ Section H: Erosion \& Sedimentation Control Report
$>$ Section I: Lighting
$>$ Section J: Architectural Design/Narrative
$>$ Section K: Traffic Report

Drawings:
> Subdivision Plan, dated 02/26/2023
θ

Project Narrative - White Rock Terrace

Building Description:

White Rock Terrace is proposed as a 55 -unit apartment building to be located on Sky View Drive in Cumberland. The building will contain 8 two-bedroom units and 47 one-bedroom units. All 55 units will be age-restricted for households whose head is aged 55+. Additionally, all 55 units will be income restricted for households earning at or below 60% of the area median income. The building will also have indoor bike storage, fitness room, community room, coin-op laundry, rooftop deck and outdoor community space. There will also be two offices for property management staff. There will be weekly hours for both the property manager and a resident services coordinator.

Building Developer:

The Szanton Company, an affiliate of the Monks Companies, specializes in developing mixedincome rental housing in or near downtowns. We have completed eleven apartment projects in Maine and New Hampshire totaling 560 units. We have two apartment projects currently under construction totaling 115 units.

The mission of The Szanton Company is to create attractive and affordable rental housing that our residents are proud to call home. We do this by:

- Creating beautiful apartments of high quality in locations in or near downtowns, adding vitality to our cities and towns;
- Developing properties which provide a consistent, long-term return to their owners, thus ensuring their stability for residents, lenders, and neighborhoods;
- Serving people with diverse incomes;
- Creating amenities for our residents which enhance the quality of their lives;
- Incorporating environmental and energy sustainability in our properties, thereby reducing their impact on the earth's environment.

Building Management:

The Szanton Company is committed to long-term ownership of our apartment assets. In 2013, we founded Saco Falls Management, our property management arm, to ensure the highest standards of visual appearance and livability for our residents, neighbors, and communities. Saco Falls Management staff is dedicated to making residents the central focus of our organization and creating a rental experience which far exceeds our residents' expectations, both in level of upkeep of properties and responsiveness to their needs.

The proposed building will offer on-site office space for both a Property Manager as well as a Resident Services Coordinator that will provide office hours each week.

For more information on our management company, please visit www.sacofallsmanagement.com.

MAJOR TRADITIONAL OR CLUSTERED SUBDIVISION SUBMISSION REQUIREMENTS AND CHECKLIST

The subdivision plan for a major traditional or clustered subdivision shall consist of an electronic submission and two (2) paper copies of all required application materials. Major subdivision review is a two-step process: 1) preliminary plan review and approval; 2) final plan review and approval. Occasionally, both preliminary and final approval may be granted by the Planning Board at the same meeting if all required information for both preliminary and final approval have been submitted, reviewed and approved by staff.
Following each submission requirement, a response is provided indicating where in the packet the information can be found or if a waiver has been requested.

PRELIMINARY PLAN

A. Preliminary plan location map. The preliminary plan shall be accompanied by a location map drawn at a scale of not over 1,000 feet to the inch to show the relation of the proposed subdivision to the adjacent properties and to the general surrounding area. The preliminary plan shall show all the area within 1,000 feet of any property line of the proposed subdivision. Within such area the location map shall show:

1. All existing subdivisions and approximate tract lines of adjacent parcels together with the names of the record owners of all adjacent parcels of land, those directly abutting or directly across any street adjoining the proposed subdivision.
2. Locations, widths and names of existing, filed or proposed streets, easements, and building lines pertaining to the proposed subdivision and to the adjacent properties.
3. The boundaries and designations of zoning districts, parks and other public spaces.
4. An outline of the proposed subdivision together with its street system and an indication of the future probable street system of the remaining portion of the tract, if the preliminary plan submitted covers only part of the subdivider's entire holding.
The cover sheet includes a location plan that identifies this project in relation to the surrounding developments. The existing conditions plan also includes some information regarding the neighboring properties.
B. Preliminary plan maps and information. The preliminary plan shall be submitted in 2 copies of one or more maps or drawings which may be printed or reproduced on paper with all dimensions shown in feet or decimals of a foot, drawn to a scale of one inch equals not more than 100 feet or, for plans describing construction of required improvements, a scale of one inch equals 40 feet; drawings are not to exceed 24 inches by 36 inches. All materials must also be provided in an electronic format. All plans shall be accompanied by the following information:
5. Proposed subdivision name or identifying title and the name of the municipality

Each plan within the plan set identifies the development along with its location.
2. Name and address of record owner, subdivider and designer of preliminary plan.

Each plan within the plan set identifies the application along with the professional that prepared the plan, multiple professionals were involved in the design of this project.
3. Date of plan submission, true North point and graphic scale.

Each plan within the plan set includes scales and north arrows as it applies.
4. Number of acres within the proposed subdivision, location of property lines, existing easements, buildings, watercourses and other essential existing physical features.

Project Narrative - White Rock Terrace

The existing condition plan includes the proposed lot area within this particular proposal. It also shows grading and other physical features associated with this development.
5. The names of all subdivisions immediately adjacent and the names of owners of record of adjacent acreage.
This parcel is within an existing subdivision, Cumberland Foreside Village, please see the Fifth Amended Subdivision plan for more details.
6. The space standard and setback provisions of the Chapter 315, Zoning, applicable to the area to be subdivided and any zoning district boundaries affecting the subdivision.
This parcel must meet the setbacks and zoning information within the Contract Zone Agreement its within. All applicable zoning has been adhered to for this development.
7. The location and size of any existing or proposed sewers and water mains, culverts, hydrants, and drains on the property to be subdivided. This shall show the connections with existing sewer or water systems. Where public water and/or sewerage is not to be provided, alternative means of water supply and sewage treatment and disposal shall be shown, both horizontally and vertically. If on-site groundwater wells are proposed, the effect of withdrawal of groundwater may be required by the Board as set forth in this chapter.
The extension of Sky View Drive includes public utilities that this building will connect into. The development will be served by public water and sewer services along with underground power and communications.
8. If individual or collective private sewage disposal system(s) is (are) proposed, the location and results of tests to ascertain subsurface soils and groundwater conditions shall be signed and numbered by a licensed site evaluator. If a cluster system or collective private sewage disposal system(s) is (are) proposed, a hydrogeologic investigation shall be submitted meeting the sewage disposal standards as set forth in this chapter. A hydrogeologic investigation may be required by the Board for individual systems as set forth in this chapter.
The development will connect into the public sewer line within Sky View Drive.
9. Location, names and present and proposed widths of existing and proposed streets, highways, easements, building lines, alleys, parks and other public open spaces both within and abutting the subdivision. Grades and street profiles of all streets, sidewalks or other public ways proposed by the subdivider shall be shown.
This information is included on the existing condition plan within the Plan Set.
10. Contour lines at intervals of two feet or at such intervals as the Planning Board may require, based on United States Geological Survey datum and referred to mean sea level.
The grading plan within the Plan Set includes both existing and proposed contours at an interval of 1 foot. Spot grades are also included to ensure minimum and maximum slopes are shown for the purposes of ADA requirements.
11. A high-intensity soil survey shall be conducted by a certified soil scientist to identify soils within the proposed development in accordance with United States Department of Agriculture Natural Resources Conservation Service National Cooperative Soil Classification. The soil boundaries and names shall be superimposed on a plot plan of the proposed development. We are requesting a waiver from this submission requirement. Please see the waivers prepared for this application.
12. Deed reference and map of survey of tract boundary made and certified by a registered land surveyor, tied into established reference points. Deed restrictions, if any, shall be described.

Project Narrative - White Rock Terrace

The existing conditions/boundary survey plan is signed by a registered land surveyor. The lot proposed for this development is subject to a subdivision amendment currently being considered by the Planning Board, running parallel to this application. All plans regarding the existing and proposed boundary of this development will be signed and sealed by a professional land surveyor.
13. A surface drainage plan or stormwater management plan, with profiles and cross sections drawn by a professional engineer registered in the State of Maine, showing preliminary design of all facilities and conveyances necessary to meet the stormwater management standards as set forth in this chapter.
Drainage features are included on the grading plan and accompanying details. In addition a stormwater management report has been prepared to describe the overall drainage design.
14. The proposed lot lines with dimensions and suggested locations of buildings. The site plan shows the proposed lot lines in addition to the location of the single proposed building associated with this development.
15. The location of temporary markers adequate to enable the Board to locate readily and appraise the basic layout in the field.
Stakes have been placed on the property to identify the locations of property corners, building corners and extents of the parking lot. A site walk was conducted and a plan provided that identified these locations.
16. All parcels of land proposed to be dedicated to public use and the conditions of such dedication.
No part of the property will be dedicated to public use.
17. The location of all natural features or site elements to be preserved.

A large stand of woodland will be preserved as part of this development. A minimum of 100 feet buffer from interstate $\mathbf{2 9 5}$ must be preserved per the Contract Zone Agreement, however as part of this plan, roughly 250 feet of woods will be preserved between interstate 295 and this development. The majority of this development will be located within an area that has been cleared of trees previously.
18. A grading and landscaping plan, including natural features to be preserved.

A landscaping plan has been included within the Plan Set.
19. Plans shall bear the seals or numbers of the registered professionals responsible for preparing appropriate sections of the plan. Surveys shall be stamped by registered professional engineers, soil surveys shall bear the numbers of a soil scientist, subsurface sewage disposal plans shall bear the number of the professional site evaluator responsible for those evaluations, geological evaluations shall bear a registered geologist's number and architectural work shall bear the architect's seal.
All plans are signed and sealed by the professional the prepared them. Please see the attached Plan Set for more details.

§ 250-4. Subdivision approval criteria.

The Planning Board shall consider the following criteria and before granting approval shall determine that:
For each approval criteria below a response in bold is provided to address how this application meets the ordinance.
A. Pollution. The proposed subdivision will not result in undue water or air pollution. In making this determination, it shall at least consider:
(1) The elevation of the land above sea level and its relation to the floodplains;

There are no floodplains located on this property.
(2) The nature of soils and subsoils and their ability to adequately support waste disposal The proposed project will be connected into the public sewer system in Sky View Drive, no subsurface disposal system will be utilized for this development.
(3) The slope of the land and its effect on effluents;

Stormwater will be collected and treated on site prior to being discharged to the adjacent property.
(4) The availability of streams for disposal of effluents; and No streams are located on the property.
(5) The applicable state and local health and water resource rules and regulations. All state and local health regulations will be adhered to for this development. It is not anticipated there will be any detrimental water pollution related to this project.
B. Sufficient water. The proposed subdivision has sufficient water available for the reasonable, foreseeable needs of the subdivision;
The project will be served by public water provided by the Portland Water District. A watermain extension is required for the extension of Sky View Drive. An ability to serve letter and watermain extension approval will be provided once approved by the Portland Water District.
C. Municipal water supply. The proposed subdivision will not cause an unreasonable burden on an existing municipal water supply, if one is to be used;
It is not anticipated that this development will be a burden to the municipal water supply its connecting into. An ability to serve letter and watermain extension approval will be provided once approved by the Portland Water District.
D. Erosion. The proposed subdivision will not cause unreasonable soil erosion or a reduction in the land's capacity to hold water such that a dangerous or unhealthy condition results; An Erosion and Sedimentation control plan is included within the plan set for this application. There are no detrimental effects anticipated by the development of this property.

Project Narrative - White Rock Terrace

E. Traffic. The proposed subdivision will not cause unreasonable highway or public road congestion or unsafe conditions with respect to the use of the highways or public roads, existing or proposed;
A traffic assessment has been completed for this application. The existing road system will adequately provide access to this project.
F. Sewage disposal. The proposed subdivision will provide for adequate sewage waste disposal and will not cause an unreasonable burden on municipal services, if they are utilized;
The project will be connected into the municipal sewer system. An ability to serve letter will be provided once reviewed and approved by the sewer district.
G. Municipal solid waste disposal. The proposed subdivision will not cause an unreasonable burden on the municipality's ability to dispose of solid waste, if municipal services are to be utilized;
It is not anticipated that this development will be a burden to the sewer district its connecting into. An ability to serve letter will be provided once reviewed and approved by the sewer district.
H. Aesthetic, cultural and natural values. The proposed subdivision will not have an undue adverse effect on the scenic or natural beauty of the area, aesthetics, historic sites, significant wildlife habitat identified by the Department of Inland Fisheries and Wildlife or the municipality, rare and irreplaceable natural areas, or any public rights for physical or visual access to the shoreline;
The property being developed is within a previously approved subdivision. There are no significant wildlife areas identified on the property.
I. Conformity with local ordinances and plans. The proposed subdivision conforms to a duly adopted subdivision regulation or ordinance, comprehensive plan, development plan or land use plan, if any. In making this determination, the Planning Board may interpret these ordinances and plans;
The plan conforms to all local ordinances, contract zones and comprehensive plan.
J. Financial and technical capacity. The applicant has adequate financial and technical capacity to meet the standards of this section as set forth in § 250-48;
The Szanton group has submitted an outline of the funding sources for the project. See section E of this application for more information.
K. Surface waters; outstanding river segments. Whenever situated entirely or partially within the watershed of any pond or lake or within 250 feet of any wetland, great pond or river, as defined in Title 38, Chapter 3, Subchapter 1, Article 2-B, of the Maine Revised Statutes Annotated, the proposed subdivision will not adversely affect the quality of that body of water or unreasonably affect the shoreline of that body of water. When lots in a subdivision have frontage on an outstanding river segment, the proposed subdivision plan must require principal structures to have a combined lot shore frontage and setback from the normal high-water mark of 500 feet. To avoid circumventing the intent of this provision, whenever a proposed subdivision adjoins a shoreland strip narrower than 250 feet which is not lotted, the proposed subdivision shall be reviewed as if lot lines extend to the shore. The frontage and setback provisions of this subsection do not apply either within areas zoned as general
development or its equivalent under shoreland zoning, Title 38, Chapter 3, Subchapter 1, Article 2-B, of the Maine Revised Statutes Annotated or within areas designated by ordinance as densely developed. The determination of which areas are densely developed must be based on a finding that existing development met the definition requirements of 30A M.R.S.A. § 4401, Subsection 1, on September 23, 1983;
The property is not within a watershed of a pond or lake and is not within 250 feet of any wetland, pond or river.
L. Groundwater. The proposed subdivision will not, alone or in conjunction with existing activities, adversely affect the quality or quantity of groundwater;
No septic fields or wells are proposed, and stormwater will be collected, detained and treated before discharged. No activity on site will adversely effect the quantity and quality of groundwater.
M. Flood areas. Flood areas, or flood-prone areas, are based on the Federal Emergency Management Agency's Flood Boundary and Floodway Maps and Flood Insurance Rate Maps and information presented by the applicant whether the subdivision is in a flood-prone area. If the subdivision, or any part of it, is in such an area, the subdivider shall determine the 100 -year flood elevation and flood hazard boundaries within the subdivision. The proposed subdivision plan must include a condition of plan approval requiring that principal structures in the subdivision will be constructed with their lowest floor, including the basement, at least one foot above the 100-year flood elevation;
The property is not within a flood zone.
N. Stormwater. The proposed subdivision will provide for adequate stormwater management; Stormwater will be collected and treated on site by a variety of BMP's. The attached stormwater management report details how these BMP's will collect, detain and treat stormwater derived from this development. No downstream detrimental effects are anticipated.
O. Freshwater wetlands. All potential freshwater wetlands, as defined in 30-A M.R.S.A. § 4401, Subsection 2-A, within the proposed subdivision have been identified on any maps submitted as part of the application, regardless of the size of these wetlands. Any mapping of freshwater wetlands may be done with the help of the local soil and water conservation district; and No freshwater wetlands are identified on the property being developed.
P. River, stream or brook. Any river, stream, or brook within or abutting the proposed subdivision has been identified on any map submitted as a part of the application. For purposes of this section, "river, stream or brook" has the same meaning as in 38 M.R.S.A. § 480-B, Subsection 9.
The Beginning with Habitat map attached within this application shows Norton Brook to the southeast of the property on the opposite side of Route 1, and Chenery Brook to the northwest of the property separated by Interstate 295 . The project will have little to no effect on either of these brooks.

Section B

Major Subdivision Application

APPENDIX B

APPLICATION FOR MAJOR OR MINOR SUBDIVISIONS

Applicant's Contact Information

Name: Heritage Village Development Group LLC, c/o Peter Kennedy
Mailing Address: _ 12 Carroll Street, Falmouth, Maine
Email Address: __ pdkennedy4@gmail.com
Phone\#: Office: \qquad Cell: _207-831-4586 Fax: \qquad
Interest in property: Own
Interest in abutting properties, if any: none

Property Owner's Contact Information

Name: _Same as applicant
Mailing Address:
Email Address: \qquad
Applicant's Architect, Landscape Architect, Engineer, Planner or Surveyor Contact
Information (If more than one, please attach contact info for each one.)
Name: \qquad Acorn Engineering, Inc, Sam Lebel, P.E. (authorized agent)
Mailing Address: P.O. Box 3372, Portland, Maine 04104
Email Address: slebel@acorn-engineering.com
Phone\#: Office: 207-775-2655 Cell: \qquad Fax: \qquad

Project Information

Name of Project: - Cumberland Foreside Village
Address of site: Sky View Drive
CCRD Book/Page \#: Tax Map/Lot \#:
Zoning District: Heritage Village - Contract Zone
Site size (acres): 4.5 \# of Lots: \square Overlay District (If any): N ore
_ Minor Subdivision X Major Subdivision Buildings \qquad \# Dwellings: 55
\qquad Conservation Subdivision

OTHER INFORMATION

1. Is Board of Adjustment and Appeals approval required? None
2. Are any ordinance waivers requested?__Yes_X_No (If yes, attach a list of waivers requested and reason for the request.)
3. Application fee per Town ordinance: \$ \$ $\$$
4. This application form and all accompanying materials must be submitted to the Town Planner at least 21 days prior to the meeting at which it is to be considered by the Planning Board.

The undersigned, being the applicant, owner or legally authorized representative, states that all information contained in this application is true and correct to the best of his/her knowledge and hereby does submitthe information for review by the Town and in accordance with applicable ordinances, stantine regulations of the Town, state and federal governments.

The Szanton Company 482 Congress St., Suite 203
 Portland, ME 04101

October 17, 2022

RE: Authorizing Acorn Engineering, Inc.

To Whom it May Concern:

This letter is related to a proposed housing development to be located on Lot 7 off Sky View Drive in Cumberland, Maine. The building, to be called White Rock Terrace, is proposed to house 55 rental units reserved for households whose head is over the age of 55. The units are also restricted for households earning at or below 60% of the area median income. There would be 8 two-bedroom units and 47 one-bedroom units.

The Szanton Company is the developer and owner representative for this project and we authorize Acorn Engineering, Inc to act as the agent for The Szanton Company for the purpose of preparing and submitting all local and state permitting applications.

If there are any questions, please use kmartin@szantoncompany.com or 207-245-6436.
Thanks

Kristin Martin
Development Officer
The Szanton Company

APPENDIX D

MAJOR TRADITIONAL OR CLUSTERED SUBDIVISION SUBMISSION REQUIREMENTS AND CHECKLIST

The subdivision plan for a major traditional or clustered subdivision shall consist of an electronic submission and two (2) paper copies of all required application materials. Major subdivision review is a two-step process: 1) preliminary plan review and approval; 2) final plan review and approval. Occasionally, both preliminary and final approval may be granted by the Planning Board at the same meeting if all required information for both preliminary and final approval have been submitted, reviewed and approved by staff.

PRELIMINARY PLAN

A. Preliminary plan location map. The preliminary plan shall be accompanied by a location map drawn at a scale of not over 1,000 feet to the inch to show the relation of the proposed subdivision to the adjacent properties and to the general surrounding area. The preliminary plan shall show all the area within 1,000 feet of any property line of the proposed subdivision. Within such area the location map shall show:

1. All existing subdivisions and approximate tract lines of adjacent parcels together with the names of the record owners of all adjacent parcels of land, those directly abutting or directly across any street adjoining the proposed subdivision.
2. Locations, widths and names of existing, filed or proposed streets, easements, and building lines pertaining to the proposed subdivision and to the adjacent properties.
3. The boundaries and designations of zoning districts, parks and other public spaces.
4. An outline of the proposed subdivision together with its street system and an indication of the future probable street system of the remaining portion of the tract, if the preliminary plan submitted covers only part of the subdivider's entire holding.
B. Preliminary plan maps and information. The preliminary plan shall be submitted in 2 copies of one or more maps or drawings which may be printed or reproduced on paper with all dimensions shown in feet or decimals of a foot, drawn to a scale of one inch equals not more than 100 feet or, for plans describing construction of required improvements, a scale of one inch equals 40 feet; drawings are not to exceed 24 inches by 36 inches. All materials must also be provided in an electronic format. All plans shall be accompanied by the following information:
5. Proposed subdivision name or identifying title and the name of the municipality.
6. Name and address of record owner, subdivider and designer of preliminary plan.
7. Date of plan submission, true North point and graphic scale.
8. Number of acres within the proposed subdivision, location of property lines, existing easements, buildings, watercourses and other essential existing physical features.
9. The names of all subdivisions immediately adjacent and the names of owners of record of adjacent acreage.
10. The space standard and setback provisions of the Chapter 315, Zoning, applicable to the area to be subdivided and any zoning district boundaries affecting the subdivision.
11. The location and size of any existing or proposed sewers and water mains, culverts, hydrants, and drains on the property to be subdivided. This shall show the connections with existing sewer or water systems. Where public water and/or sewerage is not to be provided, alternative means of water supply and sewage treatment and disposal shall be shown, both horizontally and vertically. If on-site groundwater wells are proposed, the effect of withdrawal of groundwater may be required by the Board as set forth in this chapter.
12. If individual or collective private sewage disposal system(s) is (are) proposed, the location and results of tests to ascertain subsurface soils and groundwater conditions shall be signed and numbered by a licensed site evaluator. If a cluster system or collective private sewage disposal system(s) is (are) proposed, a hydrogeologic investigation shall be submitted meeting the sewage disposal standards as set forth in this chapter. A hydrogeologic investigation may be required by the Board for individual systems as set forth in this chapter.
13. Location, names and present and proposed widths of existing and proposed streets, highways, easements, building lines, alleys, parks and other public open spaces both within and abutting the subdivision. Grades and street profiles of all streets, sidewalks or other public ways proposed by the subdivider shall be shown.
14. Contour lines at intervals of two feet or at such intervals as the Planning Board may require, based on United States Geological Survey datum and referred to mean sea level.
15. A high-intensity soil survey shall be conducted by a certified soil scientist to identify soils within the proposed development in accordance with United States Department of Agriculture Natural Resources Conservation Service National Cooperative Soil Classification. The soil boundaries and names shall be superimposed on a plot plan of the proposed development.
16. Deed reference and map of survey of tract boundary made and certified by a registered land surveyor, tied into established reference points. Deed restrictions, if any, shall be described.
17. A surface drainage plan or stormwater management plan, with profiles and cross sections drawn by a professional engineer registered in the State of Maine, showing preliminary design of all facilities and conveyances necessary to meet the stormwater management standards as set forth in this chapter.
18. The proposed lot lines with dimensions and suggested locations of buildings.
19. The location of temporary markers adequate to enable the Board to locate readily and appraise the basic layout in the field.
20. All parcels of land proposed to be dedicated to public use and the conditions of such dedication.
21. The location of all natural features or site elements to be preserved.
22. A grading and landscaping plan, including natural features to be preserved.
23. Plans shall bear the seals or numbers of the registered professionals responsible for preparing appropriate sections of the plan. Surveys shall be stamped by registered professional engineers, soil surveys shall bear the numbers of a soil scientist, subsurface sewage disposal plans shall bear the number of the professional site evaluator responsible for those evaluations, geological evaluations shall bear a registered geologist's number and architectural work shall bear the architect's seal.

FINAL PLAN

C. The final subdivision plan for a major traditional or clustered subdivision shall consist of an electronic submission and two (2) paper copies of all required application materials. All materials must also be provided in an electronic format.

The final plan shall show:

1. All of the information presented on the preliminary plan and location map and any amendments thereto required by the Board or otherwise added to the plan. Engineering plans submitted shall be final plans on which construction may be based.
2. The name, registration number and seal of the engineer, land surveyor, geologist, soil scientist, architect or planning consultant who prepared the plan.
3. Street names and lines, pedestrian ways, lanes, easements, rights-of-way and areas to be reserved for or dedicated to public use.
4. The length of all straight lines, the deflection angles, radii, length of curves and central angles of all curves, tangent distance and tangent bearings for each street.
5. An actual field survey of the boundary lines of the tract, giving complete descriptive data by bearings and distances, made and certified by a licensed land surveyor. The corners of the tract shall be located on the ground and marked by monuments as herein required and shall be referenced as shown on the plan.
6. Sufficient data acceptable to the municipal officials to determine readily the location, bearing and length of every lot line and boundary line and to reproduce such lines upon the ground. Where practical these should be tied to reference points previously established.
7. The survey of the outside boundaries of the tract and the computation of the lot lines shall be performed to an accuracy of one foot in 5,000 feet. If requested by the Planning Board, the surveyor shall furnish copies of computation sheets for outside boundaries showing.
a. Sketch of traverse lines.
b. Closures;
c. Adjustments;
d. Coordinates; and
e. Computation of outside boundaries.
8. By proper designation, all public open space for which offers of cession are made by the subdivider and those spaces to which the title is reserved by him.
9. Lots and blocks within the subdivision numbered in accordance with local practice.
10. Proposed homeowners' covenants and restrictions.
11. Required MDEP stormwater maintenance documents.
D. There shall be submitted to the Board with final plan:
12. Copies of declarations, agreements or other documents showing the manner in which open space or easements are to be held and maintained.
13. Where conveyance of public open space or easements to the Town is contemplated, a written offer to make such conveyance to the Town and written evidence that the municipal officers are willing to accept such conveyances and are satisfied with the terms and conditions of the proposed conveyance and with the legal sufficiency of the proposed transfer documents. Such written evidence shall not constitute an acceptance by the municipality of any such public open space.

COMPLETION CHECKLIST FOR MAJOR TRADITIONAL OR CLUSTERED SUBDIVISION SUBMISSION REQUIREMENTS

Waivers: Please make a check in the Waiver Request column for any requested waivers. Attach a separate sheet citing the Subdivision Ordinance section number, description, and reason for the waiver request.

	Check if provided	Location of information in packet, e.g. plan \#, page \#	Waiver Request?
General Submissions:			
15 copies of plans and materials. All sheet sized to be 24" x 36"	\checkmark	Application Submission	
$1 "=100$ ' scale for general plan	\checkmark	Plan Set	
l" $=40$ ' scale for construction of required improvements	\checkmark	Plan Set	
Traffic Info?	\checkmark	Application Section L	
Capacity to Serve letters?		forward upon receipt	
Financial and Technical Capacity (Sec.14)	\checkmark	Application Section E	
Sewer user permits required? Status?			
Deed restrictions, if any, describe on separate sheet	N/A		
Cover Sheet:			Plan Set - Cover Sheet

	Check if provided	Location of information in packet, e.g. plan \#, page \#	Waiver Request
Name \& address of record owner, subdivider, and designer of preliminary plan	\checkmark		
Location Map:			
Scale 1" $=1000$ '	\checkmark	Plan Set	
Shows area 1000' from property lines	\checkmark	Plan Set	
All existing subdivisions	\checkmark	Plan Set	
Approximate tract lines of adjacent parcels	\checkmark	Plan Set	
Approximate tract lines of parcels directly across street	\checkmark	Plan Set	
Location of existing \& proposed streets, easements, lot lines \& bldg. lines of proposed subdivision \& adjacent properties.	\checkmark	Plan Set	
Existing Conditions Plan:			
Existing buildings	N/A		
Watercourses	N/A		
Legend	\checkmark	Plan Set	
Wetlands	N/A		
Existing physical features (trees 10 " diameter or more. Stone walls			\checkmark
Trail System?	N/A		
Subdivision Plan:			
Date of plan submission, true north \& graphic scale	\checkmark	Plan Set	
Net residential acreage calculations	N/A		
Legend	\checkmark	Plan Set	
Trail (connecting?)	N/A		
Widths of existing/proposed streets, easements \& bldg. lines	N/A		
Names of existing/ proposed streets, easements \& bldg. lines	\checkmark	Plan Set	
Boundaries \& designations of zoning districts, parks, public spaces	\checkmark	Plan Set	
Outline of proposed subdivision w/ street system	\checkmark	Plan Set	
Future probable street system of remaining portion of tract.	N/A		

	Check if provided	Location of information in packet, e.g. plan \#, page \#	Waiver Request
Opportunities for Connecting Road(s) (13.2D)	N/A		
Space and Setback of district	\checkmark	Plan Set	
Classification of road	N/A		
Width of road(s)	N/A		
Drainage type (open, closed, mix)	\checkmark	Plan SetStormwaterManagementreport	
Type of byway provided (8.4D)	N/A		
Names of adjacent subdivisions	\checkmark	Plan Set	
Names of owners of record of adjacent acreage	\checkmark	Plan Set	
Any zoning district boundaries affecting subdivision	N/A		
Location \& size of existing or proposed sewers, water mains, culverts, hydrants and drains on property	\checkmark	Plan Set	
Connections w/existing sewer or water systems	\checkmark	Plan Set	
Private water supply shown	N/A		
Private septic shown	N/A		
Hydro-geologic study			\checkmark
(option for Board)			
Test pit locations	\checkmark	Plan Set	
Well locations	N/A		
Signature \& lic. \# of site evaluator	N/A		
Existing streets: location, name(s), widths w/in and abutting	\checkmark	Plan Set	
Proposed streets: location, name(s), widths w/in and abutting	\checkmark	Plan Set	
The above for any highways, easements, bldg. lines, alleys, parks, other open spaces w/in and abutting	N/A		
Grades \& street profiles of all streets, sidewalks or other public ways proposed	\checkmark	Plan Set	
2'contour lines	\checkmark	Plan Set	
High intensity soil survey by cert. soil scientist			\checkmark
Soil boundaries \& names superimposed on plot plan	\checkmark	Plan Set	
Deed reference \& map of survey of tract boundary by reg. land surveyor tied to established reference points	\checkmark	Plan Set	

$\left.\begin{array}{|l|c|l|l|}\hline & \begin{array}{l}\text { Check if } \\ \text { provided }\end{array} & \begin{array}{l}\text { Location of information in } \\ \text { packet, e.g. plan \#, page \# }\end{array} & \begin{array}{l}\text { Waiver } \\ \text { Request }\end{array} \\ \hline \begin{array}{l}\text { Surface drainage or stormwater mgmt plan } \\ \text { w/profiles \& cross sections by a P.E. } \\ \text { showing prelim. design and conveyances }\end{array} & & \text { PlanSetStomwater Managementreport }\end{array}\right]$

	Check if provided	Location of information in packet, e.g. plan \#, page \#	Waiver Request
Designation of all open spaces w/ notes on ownership	N/A		
Copies of declarations, agreements or other documents showing the manner in which open space or easements are to	N/A		
Written offer for any conveyance to the Town of open space or easements along with written evidence that the Council is willing to accept such offer	N/A		
Evidence of Outside Agency Approvals		forward upon receipt	

As per Section 7.2-REVIEW AND APPROVAL BY OTHER AGENCIES:
E. Where review and approval of any subdivisions or site plan by any other governmental agency is required, such approval shall be submitted to the Planning Board in writing prior to the submission of the Final Plan.

Please list below all outside agency approvals that are required for this subdivision.

- Maine Department of Environmental Protection: List type of permit(s) required (e.g., SLODA, NRPA (tier type?), Maine Construction General Permit, etc.)

Amendment to the SLODA permit is required through DEP
none - US Army Corps of Engineers
none - Maine Department of Transportation: List type of permit(s) required.
none - Maine Department of Inland Fisheries and Wildlife
none - Cumberland County Soils and Water Conservation Service: Required by Town.

Other: (Please List): \qquad

- City/Township
- Conservation and Connectivity Planning Resources \square Blocks and Connectors \square Conserved Lands
- \triangle Focus Areas
\equiv
\equiv
nee1$\sqrt{-2}$

S

Waiver Request

Submission Requirement

Hydro-geologic study

Waiver Request

Eliminate the requirement to submit a Hydro-Geologic Study

Explanation

This development will be served by both public water and public sewer systems located within Sky View Drive. In addition, stormwater is proposed to be detained and treated on site within lined systems designed to maintain a separation from groundwater. There is no anticipated detrimental effects to the groundwater nor a need to determine the capacity of groundwater on site for this development.

Waiver Request

Submission Requirement

High Intensity soil survey by certified soil scientist

Waiver Request

Reduce the requirement from High Intensity to Medium Intensity (Class C) soil survey.

Explanation

This development will be served by both public water and public sewer systems located within Sky View Drive. In addition, stormwater is proposed to be detained and treated on site within lined systems designed to maintain a separation from groundwater. The types of soils on site will not be used to determine type of sewerage disposal system or stormwater treatment system on site and a Medium Intensity survey provides accurate enough information for site stormwater modeling.

Waiver Request

Submission Requirement

Existing physical features (trees 10" or greater)

Waiver Request

Eliminate the requirement to include location of individual trees

Explanation

Most of the development is within a cleared area on the property. Trees will be removed from the site to make room for the building and some outdoor activity areas, however the vast majority of existing trees on the property will be retained.

Waiver Request

Submission Requirement

Parking Requirement

Waiver Request

Reduce parking requirement from 2 spaces per dwelling unit to 1.4 spaces per dwelling unit.

Explanation

The Szanton Company completed a parking study of 55+ residents at our own properties in 2018 in preparation for an apartment building in Portland. Our parking study showed that:

- Portland based properties (based on 100% building occupancy):
- 13 out of $28,55+$ households had cars for a rate of 46.4%
- Biddeford based properties (based on 100\% building occupancy):
- 40 out of $55,55+$ households had cars for a rate of 72.7%

In 2018, we also commissioned a Parking Assessment that was completed by Traffic Solutions in preparation for an apartment building for 55+ residents. This parking assessment looked at two senior housing facilities managed by Avesta Housing in the Greater Portland Area. The following information was gathered:

Table 1
Parking Utilization Data
Existing Greater Portland Area Senior Housing Facilities

$\begin{aligned} & \text { Facility } \\ & \text { Location } \end{aligned}$	$\begin{aligned} & \text { \# of } \\ & \underline{\text { Units }} \end{aligned}$	$\begin{aligned} & \text { \# of Site } \\ & \underline{\text { Spaces }} \end{aligned}$	$\frac{\begin{array}{c} \text { July 2 } \\ \text { Utilization } \end{array}}{\text { Data }}$		$\frac{\begin{array}{c} \text { July 3 } \\ \text { Utilization } \end{array}}{\text { Data }}$		$\begin{gathered} \frac{\text { July } 5}{} \\ \frac{\text { Utilization }}{\text { Data }} \end{gathered}$		TOTAL	AVERAGE
			AM	PM	AM	PM	AM	PM		
Biddeford 5 Graham Street	35	26	n/a	18	18	17	17	17	87 vehicles	$\begin{gathered} 17.4 \\ \text { vehicles } \end{gathered}$
Portland 47 Smith Street	20	20	n/a	5	5	6	6	6	28 vehicles	$\begin{gathered} 5.6 \\ \text { vehicles } \end{gathered}$
TOTAL	55	46	n/a	23	23	23	23	23	114 vehicles	$\begin{gathered} \hline 22.8 \\ \text { vehicles } \end{gathered}$

NOTES:
$\stackrel{-}{5}$
(1) Avesta Housing provided information that all units at both identified senior housing facilities are currently occupied.

The results of the survey show a combined average peak parking demand of $\mathbf{2 2 . 8}$ parking spaces for the two senior adult apartment sites, which include a total of 55 senior adult housing units. Accordingly, the peak parking demand of the two Avesta properties is estimated at 0.41 spaces per apartment unit $(22.8 \div 55=0.41$ spaces per apartment unit).

Traffic Solutions, applying the peak parking demand value of 0.41 spaces per unit, estimates the proposed 51 senior adult apartment units will require a minimum of 21 parking spaces to meet the estimated peak parking demand of the building tenants.

Unlike the Biddeford and Portland locations reviewed in these studies, the site located on Sky View Drive in Cumberland lacks access to public transportation and walkability to amenities
within a half-mile. Due to this fact we acknowledge that White Rock Terrace will require more parking than is indicated in these studies.

Zoning requires 2 spaces per apartment. White Rock Terrace is largely one-bedroom units with only 8 of the 55 units being two-bedrooms. Due to the large number of one-bedroom units it is expected that many of the units will be occupied by single-person households and therefore only require on car. Due to this fact we are requesting to reduce the parking requirement from 110 spaces to 77 spaces. This will provide 1.4 spaces per apartment.

In addition, we have developed an alternative site plan option that shows the ability to add parking in the future if it is determined that the allotted 77 spaces are insufficient for demand.

Section C

Right, Title, \& Interest

TO: KRISTIN MARTIN F=207-245-6442
FROM: PETER NENNED 207-831-4586
hULL OONE!
$26 A B A L 22$

PURCHASE AND SALE AGREEMENT

This Purchase and Sale Agreement is entered into by the below-named parties as of the date on which the last to sign of Seller and Buyer have executed this Agreement as shown below next to their respective signatures (the "Effective Date").

1. PARTIES. HERITAGE VILLAGE DEVELOPMENT GROUP, LLC, a Florida limited liability company with a mailing address as set forth below ("Seller"), agrees to sell, and SZANTON MONKS PROPERTIES, LLC, a Maine limited liability company with a mailing address also set jorth below ("Buyer"), agrees to buy, upon the terms and conditions hereinafter set forth, the real estate described in Paragraph 2 of this Agreement.
2. DESCRIPTION. The real estate to be sold by Seller to Buyer pursuant to this Agreement consists of a portion of the property of Seller located on Lot 7 ("Lot 7") of the Heritage Village Subdivision located on Rt. 1 in Cumberland, Maine, being generally shown on the sketch attached hereto as Schedule A thereto (the "Premises"). The boundaries of the Premises shall be determined by mutual agreement of the parties within 120 days of the Effective Date rending input from:'Town of Cumberland officials and the Buyer's enginecring and design consuitants, to be finalized by a survey of the Premises prepared by Owen Haskell, Inc. at Buyer's expense, and such metes and bounds surveyed description shall represent the Premises to be conveyed from Seller to Buyer at Closing.

The parties acknowledge the Buyer's intended use of the Premises to develop fifty-five (55) unit of high cuality professionally managed rental housing for households headed by persons aged 55 years or more (the "Project") financed in part through the low-income housing tax credit and other sources provided or administered in part by Maine State Housing Authority and in compliance with the Amended and Restated Contract Zoning Agreement by and biween the Town of Cumberland and Seller dated September 5, 2019 and recorded in Book 35978, Page 200 of the Cumberland County Registry of Deeds (the "Contract Zoning Agreement")
3. DEED. The Premises shall be conveyed by warranty deed (the "Deed"), which shall convey good and clear record and marketable title, free from all liens and encumbrances, with the exception of the easements, covenants and restrictions which do not, in the sole opinion of Buyer, adversely affect Buyer's proposed development of the Premises and do not violate or cause a violation of, or are otherwise inconsistent with, (i) any applicable local, state and federal laws, ordinances, rules and regulations; or (ii) any local, state or federal govemmental permit, approval, license or consent which is necessary or convenient under applicable local, state and federal laws, ordinances, rules and regulations in order to permit Buyer's proposed development and use of the Premises.
4. PURCHASE PRICE. The purchase price (the "Purchase Price") for the Premises is Seven Hundred Seventy Thousand Dollars ($\$ 770,000.00$), payable as follows:
(a) Within three (3) business days of the Effective Date, Buyer shall pay to Seller Three Thousand Dollars $(\$ 3,000.00$) as an earnest money deposit (the "Deposit") to be
held by Drummond Woodsum, counsel for the Buyer, and disbursed in accordance with, the terms and conditions of this Agreement, and to be applied toward the Purchase Price at Closing. Provisions regarding the refundability and non-refundability of the Deposit
are in Sections 7 and 19; and
(b) The balance of the Purchase Price is to be paid to Seller by the Buyer at the time of Closing by certified or cashier's check, or wire transfer, subject to the credits and prorations hereinafter set forth.
5. WTTHHOLDNG TAX. Seller is hereby notified that Buyer will withhold two and one-half percent (2.5\%) of the Purchase Price for transfer to Maine Revenue Services pursuant to 36 M.R.S.A. $\$ 5250-$ A unless (a) Seller furnishes a certificate to Buyer at the Closing, as hereinafter delined, stating, under penalty of perjury, that as of the date of the Closing, Seller is a resident of the State of Maine, or (b) Seller furnishes a certificate from the Maine Revenue Services to Buyer at the Closing stating that no taxes are due on the gain from the transfet of the Premises or that Seller has provided adequate security to the Maine Revenue Services to cover the tax liability resulting from said transfer.

6. TIME FOR PERFORMANCE/DELIVERY OF DEED.

(a) Except as expressly set forth to the contrary in this Agreement, the use of the "days" in this Agreement, including all addenda that may be made a part hereof, shall mean calendar days.
(b) The Deed and other transfer documents are to be delivered via overnight mail or by personal appearance by the Seller, and the consideration paid (the "Closing") on (i) the date that is eighteen (18) months from the Eticctive Date, or (ii) on such earlier date not iess than seven (7) days foliowing notice from Buyer to Seller thereof, at 11:00 a.m. at Drummond Woodsum, 84 Matginal Way, Suite 600, Portland, Maine or such other location as may be agreed by Buyer and Seller (the "Closing Date"). Notwithstanding the foregoing, Buyer shall have the right to extend the Closing Date for up to three (3) separate extensions of thirty (30) days (each, an "Extension Period") with the first such Extension Period extending the Closing Date an additional 30 days and each subsequent Extension Period extending the Closing Date an additional thinty (30) days from the then-applicable Closing Date. Buyer shall provide notice to the Seller of its exercise of each Extension Period prior to the then-applicable Closing Date. Upon Buyer's exercise of the first Extension Period, the Deposit shall be non-refundable and not applied to the Purchase Price at Closing.

7. BUYER'S INSPECTIONS.

Prior to the date set for Closing hereunder, Buyer and Buyer's agents, at their own risk and expense, shall have the right to enter, inspect, survey and conduct such other activities on or around the Premises as are necessary in order to conduct any investigations or inspections or surveys or other research as Buyer may choose to conduct or have performed, including without limitation geotechnical borings. Buyer shall be obligated to reasonably restore the Premises in a
worknanlike manner promptly following the completion of any inspection or testing, except for the removal of any lead and asbestos sampling for which the Premises may be left as-is following the completion of such sampling. Buyer may terminate this Agreement prior to Closing if the results of Buyer's due diligence are unsatisfactory to Buyer in its sole discretion or for any other reason, by written notice to Seller. Upon any such termination within 120 days of the Effective Date, Buyer shall receive a full refund of the Deposit paid; after 120 days from the Effective Date, no amount of the Deposit shall be refunded to Buyer except if the Seller breaches or defaults under this Agreement or is unable to deliver title as required by this Agreement. Should after 120 days from the Effective Date Buyer notify Seller in writing that it no longer intends to close the transaction contemplated by this Agreement, Buyer shall assign and deliver to Seiler all permits, approvals, surveys, drawings, environmental reports, any engineering reports affecting the Premises obtained by Buyer, if any, and to the extent pernitted by law.
8. CIOSING DOCUMENTS. At the Closing, and in addition to any other documents referred to in this Agreement to be delivered to Buyer, Seller shall execute, acknowledge as necessary and deliver the following documents and such other documents as may be reasonably required to complete the transaction contemplated herein:
(a) Transfer Documents. The Deed and a Maine Real Estate Transfer Tax Declaration of Value; the real estate transfer tax imposed pursuant to 36 M.R.S.A. §4641A shall be split equally between Seller and Buyer at Closing.
(b) Underground Oil Storage Tank Certification. A written notice certifying pursuant to 38 M.R.S.A. §563(6) an underground oil storage tank exists and shall disclose its registration number or numbers, the exact location of the facility, whether or not it has been abandoned in place, and that the facility is subject to regulation by the Maine Board of Environmental Protection; and
(c) Other Documents. Such other documents as are customarily delivered by Sellers to Buyers of real property in the State of Maine, including title insurance affidavits and reasonable evidence of Seller's company authority to sell the Premises.
9. SELLER'S WORK. Seller shall (i) preliminarily construct Skyview Drive, the road to the Premises from Route I as such is preliminarily depicted on Exhibit A of the Contract Zoning Agreement (the "Road"), sufficient for the passage of construction vehicles and including completion of a rough coat finish to the Road within six (6) months of the date of receipt of the Approvals, as such term is defined below; (ii) provide water, sewer, and electricity to the boundary of the Premises prior to Closing; and (iii) after Closing, complete the construction of the Road, including without limitation, the finish coat, within 3 months after receiving written notice from Buyer to proceed, which notice shall be given not later than 18 months after Closing. (collectively, the "Seller's Work"). Within a reasonable period of time after execution of this Agreement, Seller shall engage a contractor and other professionals as may be necessary to prepare plans and specifications for Seller's Work (the "Plans") and Seller shall deliver the Plans to Buyer within ten (10) days of Seller's receipt of the Plans for Buyer's approval, which shall not be unreasonably withheld. Buyer's approval or reasonable disapproval
shall be delivered to Seller within ten (10) days of Buyer's receipt of the Plans. If Buyer reasonably disapproves of any portion of the Plans, the parties shall meet, within five (5) business days after Buyer's disapproval, to agree upon revisions to the Plans to meet the reasonable satisfaction of Buyer. Buyer and Seller agree to cooperate in good faith to ensure the Plans are developed and approved in conjunction with Buyer's design and planning work for the Project so that governmental approval of the Plans and the Project can be concurrently obtained (collectively, the "Approvals"). Upon Buyer's approval of the Plans, Seller shall directly enter into an agreement(s) with third-party contractors to complete Seller's Work (each, a "Seller's Work Contract" and if more than one, collectively, the "Seller's Work Contracts") and to the extent required by law, Seller and its contractor(s) shall apply for and obtain all construction and/or any other permits, licenses or approvals from the Town of Cumberland required in order to perform Seller's Work. Seller shall provide Buyer with copies of all such Seller's Work Contracts and permits, licenses or approvals directly upon execution or receipt thereof. Seller's Work shall be conducted at Seller's sole cost and expense and in a good and workmanlike manner.

At Closing, Seller shall complete one of the following options to secure the completion of Seller's Work:
(i) An amount equal to One Hundred Fifty Percent (150\%) of the sum of the costs per the Seller's Work Contracts to complete the portion of Seller's Work not completed by Closing shall be withheld from the Purchase Price and placed in a non-interest beating escrow account by a mutually agreed upon escrow agent (the "Seller's Work Escrow") at Closing for application against Seller's obligations hereunder. Upon Seller's request, Buyer shall disburse reasonable monthly progress payments pursuant to Seller's Work Contract which shall be subject to a ten percent (10%) retainage payable on substantial completion of Seller's Work less 150% of punch list items. Upon completion or Seller's Work and payment for Seller's Work after " Closing, any excess funds in Seller's Work Escrow shall be paid to Seller; or
(ii) Contingent on Buyer, Buyer's lenders, Buyer's low income housing tax credit investors, and Maine State Housing Authority's (collectively, "Buyer's Lenders") commercially reasonable approval, Seller shall deliver to Buyer an unconditional, clean, irrevocable letter of credit with a minimum term of twenty-four (24) months (the "Letter of Credit") in an amount equal to One Hundred Fifty Percent (150%) of the sum of the costs per the Seller's Work Contracts to complete the portion of Seller's Work not completed by Closing issued by a bank reasonably acceptable to Seller that accepts deposits, maintains accounts, and negotiates letters of credit. The Letter of Credit will be in form and content reasonably acceptable to Buyer, Buyer's lenders, Buyer's low income housing tax credit investors, and the Maine State Housing Authority. Buryer will pay all charges to obtain and maintain the Letter of Credit. The Letter of Credit will be payable solely upon its presentation with a sight draft and will be held by Buyer as security for the performance by Seller of its obligations to complete Seller's Work under this Agreement. If Seller fails to renew the Letter of Credit at least thirty (30) days before its expiration or replace it with a letter of credit satisfying the conditions of this Section, Buyer may draw upon the Letter of Credit in full and immediately deposit the proceeds with Buyer's attorney to be held in escrow for the purpose of securing Seller's obligation to complete Seller's

Work. If Seller completes Seller's Work, Buyer shall promptly return the Letter of Credit to Seller. Provided the bank issuing the Letter of Credit agrees, or provides its consent if necessary pursuant to the terms of the Letter of Credit, Buyer may assign the Letter of Credit, and Buyer's rights to issue a sight draft and present the Letter of Credit for payment and apply the proceeds thereof under this Agreement, to any one or more lender(s) providing or guarantying financing for the construction of the Project, or Buyer's performance of its obligations regarding the Project, without Seller's consent. Should Seller desire to elect this option (ii) to secure the compietion of Seller's Work, Seller shall notify Buyer of the same and provide a draft of the proposed Letter of Credit to Buyer at least ninety (90) days prior to Closing for Buyer's and Buyer's Lenders' review, which consent shall be at Buyer's sole discretion, and Buyer's decision regarding such consent shall be given to Seller within thirty (30) days after Buyer's receipt of the proposed letter of credit. Should Seller fail to provide a draft of the proposed letter of credit to Buyer at least ninety (90) days prior to Closing or should Buyer not grant its consent in accordance with this Section, Seller shall proceed with option (i) above.
10. POSSESSION AND CONDITION OF PREMISES. Full possession of the Premises free of all tenants and occupants is to be delivered at the Closing, the Premises to be as is and in the same condition as they are now, reasonable wear and tear excepted. Seller agrees to make no change to the Premises in any manner inconsistent with the Contract Zoning Agreement, qualification of the Premises for low-income housing tax credits, and the development by Buyer thereof, as determined by Buyer in Buyer's sole discretion.

11. EXTENSION TO PERFECT TITLE OR MAKE PREMISES CONFORM. If

 Seller shall be unable to give title or to make conveyance, or to deliver possession of the Premises; all as herein stipulated, or, if at the time of the Closing the Premises do not conform with the terms and conditions hereof, then Seller shall use commercially reasonable efforts to remove any defects in tile, or to deliver possession as provided herein; or to make the Premisess confom to the tenns and conditions hereot, as the case may be, in which event the time for performance hereof shall be extended for a period of up to forty-five (45) days, or such longer period as shall be agreed to by Buyer.12. FAILURE TO PERFECT TITLE OR MAKE PREMISES CONFORM. If at the expiration of such extended time Seller shall have failed to remove any defects in title, deliver possession, or make the Premises conform, as the case may be, all as herein agreed, then, at Buyer's option, the full Deposit, together with all interest earned thereon, shall be promptly returned to Buyer and all other obligations of the parties hereto shall cease and this Agreement shall be void without recourse of the parties hereto.
13. BUYER'S ELECTION TO ACCEPT TITLE AND CONDITION. In addition to such other remedies available to Buyer under this Agreement, Buyer shall have the election to accept such title to the Premises in its then condition as Seller can deliver and to pay therefor the purchase price without deduction, in which case, Seller shall convey such title or deliver the Premises in such condition, except that in the event of such conveyance in accordance with the provisions of this clause the Premises shall have been damaged by fire or casualty insured against, then Seller shall, unless Seller have previously restored the Premises to its former
condition, and at Buyer's express election, pay over or assign to Buyer, on delivery of the deed, all amounts recovered or recoverable on account of such insurance, less any amounts reasonably expended by Seller for any partial restoration.
14. $\operatorname{ACCEPTANCE~OF~DEED.~The~acceptance~of~the~Deed~and~other~transfer~}$ documents by Buyer shall be deemed to be a full performance and discharge of every agreement and obligation herein contained or expressed, except such as are, by the terms and conditions hereof, to be performed after the delivery of said documents or to otherwise survive the Closing hereunder.
15. USE OF PURCHASE MONEY TO CLEAR TITLE. To enable Seller to make conveyance as herein provided, Seller may, at the time of delivery of the Deed and other transfer documents, use the purchase money or any portion thereof, to clear the title of any or all encumbrances or interests, provided that all instruments so procured are recorded simultaneously with the delivery of said Deed and other transfer documents.
16. RISK OF LOSS. Until delivery of possession of the Premises from Seller to Buyer, risk or loss or damage to Premises by fire or otherwise shall be on Seller.
17. ADUUSTMENTS. All utilities shall be transferred to the Buyer as of the date of closing and the Seller shall be responsible for any utility charges prior to the date of closing, if any. The Buyer and Seller will each pay its share of the real estate transfer tax due on the sale as provided by law.
18. ADJUSTMENT OF UNASSESSED AND ABATED TAXES. Real estate taxes and any other municipal charges and assessments will be prorated as of the date of closing.
19. BROKERAGE. Seller and Buyer each represent and warrant to the other that no brokers, agents or consultants have been employed with respect to this transaction by either of them other than the following: Malone Commercial Brokers (acting through Seller). The commission and/or compensation of Malone Commercial Brokers shall be paid by Seller. Seller and Buyer agree to indermify and hold the other harmless from any claim by any other broker or agent claiming compensation in respect of this transaction, alleging an agreement with Seller or Buyer, as the case may be. This agreement to indernnify and hold harmless shall survive the Closing.
20. DEJPAULT Should Seller fail to fulfill Seller's obligations hereunder, Buyer may elect to receive a refund of the Deposit, or to pursue all available remedies, including specific performance and reasonable attomey's fees. Should Buyer fail to fulfill Buyer's obligations hereunder, Seller shall retain the Deposit as liquidated damages as Seller's sole and exclusive remedy at law or in equity for Buyer's default without further recourse to Buyer and Buyer shall be relieved of all obligations hereunder.
21. SELLER'S WARRANTIES AND REPRESENTATIONS. Seller warrants and represents as of the date of execution by Seller of this Agreement and as of each date through and including the Closing that:
(a) That, to the best of Seller's knowledge, the information set forth in any property disclosures delivered by Seller to Buyer in connection with the delivery of this Agreement is accurate and complete;
(b) There is the best of Seller's knowledge, no hazardous or toxic wastes, substances, matters or materials, including but not limited to any material defined as hazardous or toxic from time to time by applicable state, local and federal law, are stored or otherwise located on the Premises or any adjacent property owned by Seller; and

In the event that changes occur as to any warranties and representations set forth in this Agreement, of which Seller has knowledge, Seller will ixomediately disclose same to Buyer when first availatle to Seller.

22. SELLER'S OBLIGATION TO PROVIDE DOCUMENTS

Within ten (10) business days of the Effective Date, Seller shall provide access to Buyer of all documents (paper or electronic) in Seller's possession that could assist Buyer in the development of the Premises, including without limitation surveys, drawings, environmental reports, engineering reports, easements and any agreements affecting the Premises, together with any copies requested by the Buyer.
23. ASSIGNMENT. The rights and obligations of Buyer under this Agreement may be assigned, in whole or in part, by Buyer to an entity in which one of more of the principals of Buyer controls the entity or the entity's general partner, provided that such assignee agrees to assume all of Buyer's obligations hereunder not specifically retained by Buyer. The rights and obligations of Seller under this Agreement may not be assigned without the written consent of Buyer.
24. EXCLUSIVITY. Subject to the terms in Paragraph 2 above, Buyer shall have the exclusive right to purchase a portion of Lot 7 until the date that is 120 days after the Effective Date, and during such period the Seller shall not, directly or indirectly, engage in discussions or negotiations with any other person or entity relating to the sale, lease, or other disposition of all or any portion Lot 7 .

25. MISCELLANEOUS.

(a) This Agreement shall be binding upon and inure to the benefit of the heirs, personal representatives, successors and assigns of the parties.
(b) Any notice relating in any way to this Agreement shall be in writing and shall be sent by (i) registered or certified mail, return receipt requested, (ii) overnight delivery by
a nationally recognized courier, or (iii) hand delivery obtaining a receipt therefor, addressed as follows:

To Seller:

With copy to: Philip H. Gleason, Esq.
24 Hillside Ave.
Cumberland, Maine 04021
To Buyer.

With copy to: Joha S. Kamninski, Esq.
SZANTON MONKS PROPERTIES, LLC c/o The Szanton Company
10 Free Street, $3^{\text {rd }}$ Floor
Portland, ME 04101
Attin: Nathan S. Szanton Drummond Woodsum \& MacMahon
84 Marginal Way, Suite 600
Portland, Maine 04101-2480
and such notice shall be deemed delivered when so posted in the case of notice by certified thail, the next business day in the case of notice by overnight courier and the business day when delivered in the case of notice by band delivery. Either party may, by such manner of notice, substitute persons or addresses for notice other than those listed above.
(c) All paragraph headings in this Agreement are for convenience of reference only and are of no independent legal significance.
(d) This Agreement may not be modified, waived or amended except in a writing signed by the parties bereto. No waiver of any breach or term hereof shall be effective unless made in writing signed by the party having the right to enforce such a breach, and no such waiver shall be construed as a waiver of any subsequent breach. No course of dealing or clelay or omission on the part of any party in exercising any tight or remedy shall operate as a waiver theteof or otherwise be prejudicial thereto.
(e) Any and all prior and contemporancous discussions, undertakings, agreements (including without limitation any prior Agreements or Memorandums of Agreement previously executed by the parties hereto) and understandings of the parties are superseded by and merged in this Agreement, which alone fully and completely expresses their entire agreement.
(f) This Agreement may be simultaneously executed in any number of counterparts, each of which when so executed and delivered shall be an original, but such counterparts shall constitute one and the same instrument. This Agreement may be transmitted between the parties by DocuSign, facsimile machine and signatures appearing on faxed or emailed instruments shall be treated as original signatures. Docusigned, faxed or emailed Agreement containing either original or faxed or emailed signatures of all parties, and multiple counterparts of the same Agreement each containing separate original or faxed or emailed signatures of the parties, shall be binding on them.
(g) If any term or provision of this Agreement or the application thereof to any person or circumstances shall, at any time or to any extent, be invalid or unenforceable, the remainder of this Agreement, or the application of such term or provision to persons or circumstances other than those as to which this Agreement is held invalid or unenforceable, shall not be affected thereby, and each term and provision of this Agreement shall be valid and be enforced to the fullest extent permitted by law.
(h) It is expressly understood and agreed that time is of the essence in respect of this
Agreement.
(i) This Agreement shall be governed by and construed and enforced in accordance with the laws in effect in the State of Maine.

IN WITNESS WHEREOF, Buyer and Seller have executed this Agreement as of the dates hereinafter set forth.

Date of Buyer's execution of this Agreement: April

WITNESS:

Date of Seller's execution of this Agreement: April _26_, 2022.
$\forall 1!9!4 x=$

Section D

200 Foot Radius Abutter List

STATE OF MAINE
DIV 24 STATE HOUSE STATION
AUGUSTA, ME 04333

15 SKYVIEW HOLDINGS, LLC
15 SKYVIEW DR, SUITE 101
CUMBERLAND FSDE, ME 04110

BELTED COW REALTY LLC
42 US ROUTE 1, SUITE 2
CUMBERLAND FSDE, ME 04110

BELL, RONNIE-LYNN
20 NAUTICAL DR
CUMBERLAND FSDE, ME 04110

YOUNG, KIMBERLY
25 CLIPPER ST
CUMBERLAND FSDE, ME 04110

HARDY, STREET, LLC
70 SUNSET PARK RD
ELLSWORTH, ME 04605

INTEGRATIVE, HEALTH CENTER OF ME 15 SKYVIEW DR, UNIT 1
CUMBERLAND FSDE, ME 04110

ELIKRIS, REALTY LLC
11 COLEMAN WAY
FALMOUTH, ME 04105

CUMBERLAND FORESIDE, VILLAGE HOMEOWNERS IVES, ELIZABETH R
ASSOCIATION
190 US RTE 1, PMB 3197
FALMOUTH, ME 04105

MCKENNEY, PETER C

639 GUILD DR.
VENICE, FL 34285
MAGEE, RHION
26 CLIPPER ST
CUMBERLAND FSDE, ME 04110

Section E

Financial \& Technical Capacity

E. Technical Capacity

Please find attached descriptions and examples of technical capacity for The Szanton Company and Acorn Engineering.

White Rock Terrace

In the last 19 years, The Szanton Company has developed 11 buildings located in Portland, Biddeford, Lewiston, Auburn, Bath, Maine and Exeter, New Hampshire. There are a total of 560 apartments in these 11 buildings. There are 2 additional buildings in under construction and 3 in pre-development including White Rock Terrace.

All of these buildings have been developed using MaineHousing's Low Income Housing Tax Credit Program. Under this program MaineHousing awards Low-Income Housing Tax Credits that are sold for equity providing funds for construction. Additionally, MaineHousing provides subsidy and a mortgage for funding.

The Szanton Company plans to use this same model in the development of White Rock Terrace. Our preapplication was submitted to MaineHousing in October of 2022 to be awarded tax credits. Additionally, an application was submitted to the Cumberland County HOME Consortium for an award of HOME funds

Statement of Financial Capacity

The total project budget is approximately $\$ 19,000,000$. Financing sources are projected as follows:

After Occupancy

\(\left.\left.$$
\begin{array}{|l|l|l|}\hline \text { Amount } & \text { Source } & \text { Description / Notes } \\
\hline \$ 6,418,000 & \begin{array}{l}\text { Low-Income Housing Tax Credit } \\
\text { (LIHTC) Equity }\end{array} & \begin{array}{l}\text { An application has been submitted to the } \\
\text { MaineHousing 4\% PLA program in October 2022. }\end{array} \\
\text { MaineHousing allocates the right to take these tax }\end{array}
$$\right\} \begin{array}{l}credits, which are spaced out over ten years.

These tax credits are sold to investors and the

proceeds are used as equity to pay for the

construction and other costs of the development.\end{array}\right\}\)| We have a long standing relationship with |
| :--- |
| Evernorth, as an investor in this type of project |
| through the purchase of LIHTC. |

During Construction

Note: total amount needed during construction is approximately $\$ 17,000,000$, which is the portion of the total budget required during construction. This total does not include approximately $\$ 2,000,000$ that is paid at permanent loan closing, including a portion of developer fees; tax/insurance reserves; operating reserves; rent-up reserves; capital replacement reserves; and tax credit monitoring fees.

Amount	Source	Description / Notes
$\$ 12,000,000$	Construction Loan from Bank (letter of interest to be obtained as part of tax credit application)	Construction loan for the duration of construction and lease-up, typically 13-15 months.
$\$ 1,300,000$	Low-Income Housing Tax Credit Equity	A portion of the tax credit equity is contributed during construction, per IRS rules.
$\$ 3,245,000$	MaineHousing Subsidy	50\% of their total award is available for construction financing.
$\$ 600,000$	HOME Funding	We will ask for the County to provide the project the HOME funding for construction financing.

THE SZANTON COMPANY

an Affiliate of the Monks Companies

ABOUT THE SZANTON COMPANY

The Szanton Company, an affiliate of the Monks Companies, specializes in developing mixed-income rental housing in or near downtowns. We have completed eight apartment projects in Maine and New Hampshire totaling 393 units.

The mission of The Szanton Company is to create attractive and affordable rental housing that our residents are proud to call home. We do this by:

- Creating beautiful apartments of high quality in locations in or near downtowns, adding vitality to our cities and towns;
- Developing properties which provide a consistent, long-term return to their owners, thus ensuring their stability for residents, lenders, and neighborhoods;
- Serving people with diverse incomes;
- Creating amenities for our residents which enhance the quality of their lives;
- Incorporating environmental and energy sustainability in our properties, thereby reducing their impact on the earth's environment.

The Szanton Company is committed to long-term ownership of our apartment assets. In 2013, we founded Saco Falls Management, our property management arm, to ensure the highest standards of visual appearance and livability for our residents, neighbors, and communities.

[^0]

PRINCIPALS \& STAFF

NATHAN SZANTON, PRESIDENT
Nathan founded the company in 1996. Since then he has been responsible for developing 617 apartment units in 24 projects. As manager or principal partner in these projects, Nathan has successfully navigated the process of market research, site acquisition, design, regulatory approvals, financing, construction, and marketing.

He has committed himself to creating comfortable and affordable rental homes for residents with diverse incomes. Some of these have been adaptive reuses for underused historic buildings; others have been thoughtfully designed new construction. Nathan holds a B.A. from Harvard University and a J.D. from the University of Maine School of Law.

ROBERT C.S. MONKS, PRINCIPAL

Robert C.S. Monks is an active capital partner and also provides a deep understanding of real estate development and financing. Throughout his career he has founded, led, and grown 19 businesses in the financial services, real estate, technology and communications sectors.

In 2011, Bobby became an owner and Chairman of Spinnaker Trust, a Maine based trust company managing over $\$ 1$ billion in assets. Bobby attended Duke University and graduated from the University of Southern Maine with a Bachelor's Degree in Political Science.

Above: Walker Terrace
Left: The Mill at Saco Falls
Facing Page: The Lofts at Bates Mill

THE HARTLEY BLOCK
155 LISBON STREET, LEWISTON, MAINE

Above: The Hartley Block
Left: Historic images of same location
Facing Page Top: The Hartley Block façade
Facing Page Bottom: Before construction

"WE ARE THRILLED THAT THE SZANTON COMPANY WILL BE REINFORCING OUR DOWNTOWN HISTORIC AND COMMERCIAL CORRIDOR BY BUILDING THIS IMPORTANT PROJECT."

-Lewiston Mayor Shane Bouchard
THE HARTLEY BLOCK brings new life to a prominent $175^{\prime} \times 100^{\prime}$ empty lot on downtown Lewiston's Lisbon Street. In 2004 and 2006, four connected historic buildings on Lisbon Street suffered extensive fire damage and were condemned and demolished, leaving a gaping hole in the city's most iconic street. One of the buildings was the site of the 1906 art studio of Marsden Hartley, an important early modern American painter born and raised in Lewiston.

A mixed-use, mixed-income project, The Hartley Block features 63 apartments aimed at a diversity of income groups and $4,000 \mathrm{sq}$. ft. of retail space along Lisbon Street. The project includes a fitness center, community room, children's playroom, dedicated bike storage, wi-fi and covered parking directly behind the building. The site is within easy walking distance of the public library (across the street), shops, restaurants, cafes, and two major parks.

This project adds momentum to downtown Lewiston's resurgence, including
 street-level public art at the entrance. Two 9-foot mosaic tile works, after Marsden Hartley paintings, animate its façade.

YEAR COMPLETED: 2019
UNITS: 63 (22 Market-Rate + 41 Income-Restricted)
ARCHITECT: Platz Associates
CONSTRUCTION MANAGER: Hebert Construction
FINANCING: MaineHousing; TD Bank; Northern New England
Housing Investment Fund; City of Lewiston.

48 HAMPSHIRE

48 HAMPSHIRE STREET, AUBURN, MAINE

Located at the corner of Hampshire and Troy Streets, 48 HAMPSHIRE will aid the revitalization of downtown Auburn's important Hampshire Street corridor by bringing 53 high-quality new apartments to the neighborhood.

These will be a mixture of one, two and three-bedroom units, varying in size from 590-950 square feet. Included in the rent are heat and hot water, off-street parking, wi-fi, fitness center, community room and indoor bike storage.

48 Hampshire is located within easy walking distance of the public library, YMCA, shops, restaurants, grocery store, drugstores, and all the amenities of downtown Auburn.

The Szanton Company broke ground in March 2019 and expects to open to residents in April 2020.

Above: Rendering of completed project Left: Same location, prior to construction
"WE ARE LOOKING FORWARD TO WATCHING YET ANOTHER MAJOR CONSTRUCTION PROJECT IN OUR DOWNTOWN TAKE SHAPE - ONE THAT WILL PROVIDE QUALITY WORKFORCE HOUSING, INJECT CAPITAL INTO OUR LOCAL ECONOMY, AND ENHANCE the image of Auburn as we become the best small city in New England"

- Auburn Mayor Jason Levesque

Above: Rendering of East elevation

PROJECTED COMPLETION: 2020
UNITS: 53 (11 Market-Rate + 42 Income-Restricted)
ARCHITECT: Platz Associates
CONSTRUCTION MANAGER: Benchmark Construction
FINANCING: MaineHousing; Boston Financial;
NBT Bank; City of Auburn.

THE FURMAN BLOCK

100 PARRIS STREET, PORTLAND, MAINE

"I THINK THIS IS THE NEXT BIG STEP IN CREATING A MULTI-USE NEIGHBORHOOD IN THIS PART OF BAYSIDE. IT'S PRETTY EXCITING TO GET THIS MOVING."

-Portland City Councilor David Brenerman

THE FURMAN BLOCK is The Szanton Company's first mixed-income project specifically for seniors, ages 55 and over. Located in the heart of Portland's West Bayside neighborhood, it's a short walk to Whole Foods and Trader Joe's, small restaurants and delis, the 3.5 mile trail that loops around Back Cove and a few blocks from downtown Congress Street's arts, business, and shopping district.

The property will feature 46 1-bedroom and five studio apartments. Some residents will have water views of Back Cove; others will enjoy views of Deering Oaks Park or Portland's downtown. All will have abundant natural light. Included in rent are heat and hot water, a fitness center, indoor bike storage and wi-fi. The property also features a community room and coin-op laundry. The street-level commercial space, to be owned and managed by Ross Furman, will be a combination of artists' studios and gallery space.

Repurposing an empty gravel lot at the corner of Parris and Kennebec Streets, The Furman Block contributes to the revitalization of this former industrial neighborhood.

PROJECTED COMPLETION: 2020
UNITS: 51 (11 Market-Rate + 40 Income-Restricted)
ARCHITECT: Archetype, P.A.
CONSTRUCTION MANAGER: Hebert Construction
FINANCING: MaineHousing; Northern New England Housing
Investment Fund; City of Portland.

Above: Rendering of completed project, from corner of Kennebec and Parris Streets

REFERENCES

AUBURN	PETER CRICHTON
	City Manager
	207-333-6601, pcrichton@auburnmaine.gov
	MICHAEL CHAMMINGS
	Director of Economic and Community Development 207-333-6601, mchammings@auburnmaine.gov
BATH	PETER OWEN
	City Manager
	207-443-8330, powen@cityofbath.com
BIDDEFORD	JOHN BUBIER
	Former City Manager
	207-846-1515, john.bubier@gmail.com
	ALAN CASAVANT
	Mayor
	207-284-4690, acasavant@biddefordmaine.org
	GREG TANSLEY
	City Planner
	207-284-9115, gtansley@biddefordmaine.org
EXETER	RUSSELL DEAN
	Town Manager
	603-773-6102, rdean@exeternh.gov
	DOUG EASTMAN
	Building Code Enforcement Officer
	603-773-6113, deastman@exeternh.gov

Acorn Engineering, Inc. is a Portland-based civil and environmental engineering firm of nine full-time employees and four construction inspectors. Acorn's team has a diverse portfolio providing Maine with quality engineering and environmental services as well as state-wide construction administration on behalf of the Maine Department of Transportation.

A cornerstone of Acorn Engineering is the attention to quality and exceptional level of service on every project, regardless of size. Our engineers and scientists pride themselves on their extensive experience, which is backed by a broad knowledge of civil and environmental engineering practices from smaller residential projects to larger commercial projects that integrate environmental assessment and site redevelopment.

Acorn Engineering has demonstrated the ability to breakdown and synthesize widely disseminated regulations into accepted engineering practices and practical site assessment and development. As a result of Acorn's efforts, the Cumberland County Soil \& Water Conservation District recently recognized Acorn as the Contractor of the Year. This was the first award associated with the nationally recognized Long Creek Restoration Project and the first time the Cumberland County Soil \& Water Conservation District ever recognized an engineering firm as their Contractor of the Year.

Acorn's expertise covers the areas of: civil/site design, evaluation, development, and permitting; and construction phase services such as construction administration, construction documents, project bidding, and site inspection including erosion and sedimentation control. Acorn's experience also includes the field of environmental engineering and compliance such as: Phase I and Phase II environmental site assessments, soil and groundwater remediation planning and design; Maine's Voluntary Response Action Program (VRAP); and stormwater treatment system design and permitting.

Acorn's engineers have designed, permitted, and overseen construction on numerous singlefamily and multifamily residential projects including traditional subdivision designs featuring on-site sewage/septic disposal and drilled wells. Furthermore, Acorn has demonstrated extensive experience and capabilities with municipalities, the Maine Department of Transportation (MDOT), Maine Department of Environmental Protection (MDEP), soil \& water conservation districts, conservation commissions, municipalities, and the private sector on environmental and site development projects as demonstrated by the following:

- Listed on Maine DEP's Pre-Qualified Vendor List for Environmental Consulting Services
- Listed on Maine DOT's Pre-Qualified Consultants for eight service areas (listed under Section I.D)
- Cumberland County Soil \& Water Conservation District Contractor of the Year for work on the Long Creek Restoration Project

ACORN ENGINEERING, INC.

REPRESENTATIVE PROJECTS

- Public Works Redevelopment - Meeting House Hill

Over the past two years, Acorn Engineering has worked in close association with the City of South Portland, neighbors, and private clients on the redevelopment of the former Public Works facility. The 6 -acre site is nestled in the middle of the Meeting House Hill residential neighbor-
 hood and is currently a mix of storage buildings, fuel fill stations, miscellaneous stockpiles, and pavement. The site will be redeveloped into a mix of multifamily townhomes and single-family dwellings comprising 38 units along with a public park and community gardens.

In addition to the environmental remediation, Voluntary Response Action Program (VRAP), and other environmental considerations given the previous land use, the project is subject to a Maine DEP stormwater management law. The redevelopment design results in a reduction in impervious area of over 50% and reduces land use intensity across the site. Though not required, several stormwater BMP's have been implemented into the site as a best practice, further attenuating and treating stormwater runoff. In addition to the significant redevelopment plan, Acorn has designed an infrastructure plan to separate the storm and sewer mains. This will include installing 400 feet of new storm drain along the existing O'Neil Street right-of-way and 700 feet of new storm drain along the proposed O'Neil Street right-of-way extension. Overall, this effort will reduce the effects of combined sewer overflows (CSO) into Casco Bay which occur due to wet-weather events and the wastewater treatment plant's inability to provide capacity for both storm and sanitary sewer flows.

As part of this project, Acorn held a multitude of meetings with the City including the assistant City manager, the former Mayor, the entire planning division, and the chief engineer of Public Works. Furthermore, Acorn has collaborated with department heads of the Fire, Parks, Public Works, and Water Resource departments to ensure a feasible and ideal project for all parties. As a result, the process was truly a collaborative effort with a number of stakeholders weighing in on the design.

ACORN ENGINEERING, INC.

REPRESENTATIVE PROJECTS

- Munjoy Heights

Acorn provided civil/site engineering and permitting for the design of Munjoy Heights - a six townhome, 29unit development on the steep slopes of Munjoy Hill in the City of Portland. Acorn designed and developed construction drawings for the sanitary sewers, storm drains, water mains, driveways and pedestrian circulation, retaining wall locations, building locations, and drainage infrastructure
 to be built in compliance with City standards.

A key component to the project was coordinating with the City on the future combined sewer separation project and the site's overall stormwater management. Additionally, discussions with neighbors and stakeholders were paramount in the project's success.

The innovative urban infill project compliments the Munjoy Hill neighborhood with a communal design and plentiful native landscaping that replaced invasive species which previously dominated the eroding banks prior to the development. The $\$ 22$ million project features a courtyard, terraced landscaping, a Portland Trails-maintained path that connects the redevelopment to the existing trail system, and low impact development (LID) techniques that meet MDEP Chapter 500 regulations. The stormwater management includes an underdrained sand filter and chambers that detain and treat stormwater on site in tandem with strategically placed rain gardens.

The project required extensive coordination and collaboration between the client, City of Portland, Portland Trails, the structural engineer, the architect, and the contractor to successfully complete the project with the first "woonerf" in the state and maintaining the existing public walking path through the property.

ACORN ENGINEERING, INC.

REPRESENTATIVE PROJECTS

- 200 Valley St

Working with Avesta Housing, Acorn Engineering provided civil engineering and permitting for Avesta's 60 -unit project in the St. John Valley neighborhood. This urban infill project replaces the existing single-family house and abutting vacant lots into new affordable housing opportunities with two levels of covered parking, amenities, and a rebuilt project frontage with new sidewalks, street trees, and bicycle hitches.

As part of the project, Acorn
 developed a transportation and parking analysis to ensure that the provided parking will adequately serve the redevelopment. Furthermore, the design team identified and implemented multiple strategies to encourage residents to efficiently utilize the many modes of transportation available on the Portland peninsula.

- Little Dolphin Drive \& Jocelyn Place

In collaboration with the South Portland Housing Authority and Risbara Holdings, Acorn provided civil engineering design and permitting of a multi-use subdivision at the end of Little Dolphin Drive in Scarborough. Proposed uses include a two-story office building and a three-story 60 -unit senior housing facility with associated parking and landscaped areas.

In addition to a voluntary neighborhood meeting, the project
 went through a 3-step master plan phase with the Town of Scarborough in which the project was collaborated on with Planning Staff, the Planning Board, and neighbors.

The project is subject to Maine DEP and US Army Corps permits. To adequately treat stormwater on the site, Acorn has designed multiple stormwater BMPs meeting Maine DEP Chapter 500 regulations resulting in a low impact design.

ACORN ENGINEERING, INC.

REPRESENTATIVE PROJECTS

- 89 Anderson Street

In collaboration with Redfern properties and the East Bayside neighborhood, Acorn developed the civil/site engineering design of a mixed use 53-unit redevelopment of an existing underutilized, urban infill lot in the East Bayside neighborhood. Acorn's scope of services included in the initial phase applying for and obtaining a zone
 change and conducting Phase I and Phase II Environmental Site Assessments to evaluate potential environmental contamination at the site.

After conducting the environmental remediation efforts, Acorn developed the site layout and design of sanitary sewers, storm drains, water mains, site driveway, retaining wall locations, building locations, parking lot design, building drainage structures, utility connections and landscaping plan (with a landscape architecture subconsultant) to meet the City of Portland Technical Standards. Acorn also integrated sidewalk and improvements associated with the project into the City's Anderson Street ByWay project. Furthermore, the project team worked with a non-profit organization, the Telling Room, to provide public art along the Fox Street streetcape in lieu of traditional fencing.

Overall, the project established an important mixed use building on a prominent corner lot adjacent to Kennedy Park which contains popular recreation space. The building houses a restaurant and the Gear Hub bicycle school on the first floor with residential apartments above which encourages an active street presence with housing, goods, and services that help tie the neighborhood together and keep eyes on the street.

ACORN ENGINEERING, INC.

REPRESENTATIVE PROJECTS

- 667 Congress Street - The Hiawatha

The $\$ 28$ million project included the civil/site engineering design for the 8story, first floor retail and 139unit apartment building on Congress Street in Portland. Vehicle parking is served by two levels with separate access from Vernon and Avon St. The project featured building and site design in an historic district adjacent to Longfellow Square.

Services included, but is not limited to, permitting with the City of Portland, layout and design of sanitary sewers, storm drains, water mains,
 pedestrian and vehicle entrances, building locations, parking lot design, and parking garage grading and drainage. Acorn provided significant coordination between the Architect, Structural Engineer, Geotechnical Engineer, Construction Management Company, Owner, and the City.

Section F

Solid Waste

F. Solid Waste Disposal

The property management company or Owner shall be responsible for locating the solid waste and recyclable material to the space allocated for solid waste storage as noted on the Site Plan (C-10).

The solid waste containers will be fully enclosed and screened from the public view.

Section G

Stormwater Management

WHITE ROCK TERRACE STORMWATER MANAGEMENT REPORT

Prepared For:

The Szanton Company
 Portland, Maine 04103

Prepared By:
Acorn Engineering, Inc.
PO Box 3372
Portland, Maine 04104

October 2022

ACORN Engineering, Inc. * www.acorn-engineering.com 207-775-2655 • PO Box 3372 • Portland • Maine • 04104

INTRODUCTION

Acorn Engineering, Inc. has been retained by Szanton Company to provide civil engineering services for the proposed development at Sky View Drive. The property consists of approximately 4.47 acres of land and contains the following parcels (Map R1, Lot 107A).

A stormwater analysis was prepared to demonstrate that the project will meet the requirements set forth by Maine DEP Chapter 500 Basic and General Standards and the following requirements from the Town of Cumberland:

- Town of Cumberland Land Use Ordinance Article 14.6.2.D.
- Maine DEP Chapter 500 Stormwater Management.

EXISTING CONDITIONS

The project site is currently a portion of an undeveloped parcel, lot 107, within the Cumberland Foreside Village subdivision and will be accessed off Sky View Drive. The site has been partially cleared as part of the original subdivision build out and is a relatively flat site. No streams, wetlands or other protected natural resources are located on the property.

The site primarily consists of brush and wooded undeveloped area with two subcatchments.
> SC 1A - This subcatchment consists of primarily wooded land that slopes towards interstate 295.
> SC 2A - This subcatchment consists of woods and brush. A swale along Sky View Drive directs stormwater towards to Route 1 via stormwater BMP's within the Sky View Drive ROW.

It should be noted that the USGS soil survey has soil type HSG D in for the entire site.

PROPOSED DEVELOPMENT

The project features the development of a single four-story building with 55 one- and twobedroom affordable rental units designated for senior housing. The building has a footprint of roughly 12,000 square feet and the development will provide 78 parking spaces and vehicular and pedestrian circulation. Overall the development will consist of 2.28 acres of disturbance, 1.86 acres of developed area including $42,700 \mathrm{sf}(0.98 \mathrm{ac})$ of impervious cover.

The site has been graded to slope with the existing topography while providing for appropriate slopes in the parking areas. The slopes on the outside of the parking areas that are not part of a stormwater system will be appropriately stabilized per the specifications in the plans and are anticipated to be heavily landscaped for further slope protection and buffering. The majority of the site's runoff, including 97.6% of the new impervious area, will be piped or diverted to one of three stormwater BMP's on the property. The majority of strowmater treatment will be provided by a Grassed Underdrained Soil Filter (GUSF) located behind the dumpster enclosure. Additional treatment will be provided via two Roof Dripline

A C O R N Engineering, Inc. - www.acorn-engineering.com 207-775-2655 • PO Box 3372 • Portland • Maine • 04104

Filters and a Rain Garden.
The discharge from these systems will ultimately flow to a level lip spreader or riprap apron before entering the roadside ditch or surrounding woods. Two 15 " storm drains are proposed to outlet into the existing ditch line with a proposed riprap apron to help reduce velocity, based on the peak 10-year flow rates the maximum water velocity discharging into the City's ditch system will be below $5 \mathrm{ft} / \mathrm{sec}$. Maine DOT recommends grassed ditches be designed to ensure flow velocities are below $5 \mathrm{ft} / \mathrm{sec}$ for the 10 -year storm, as such the stormwater outlet aligns with industry standard hydraulic design.

The development will be served by the Portland Water District, CMP, Spectrum, Consolidated Communications, and municipal sewer system. Utility mains and services have been coordinated with each respective utility company.

GENERAL STANDARDS - WATER QUALITY

All treatment BMPs proposed as part of this development were designed in accordance with The Maine Stormwater Management Design Manual Chapter 7.3 and 7.7.

Treatment Area

In accordance with Chapter 500, General Standard rules, treatment must be provided for no less than 95% of the impervious area and 80% of the developed area. As such, it is proposed that treatment is required via the GUSF, Roof Dripline Filter and Rain Garden BMP's. The treatment of the impervious and developed surfaces by the BMPs are as follows:

Table 1-New Impervious Area Treatment Area Table									
Existing Imp. Area (SF)	Proposed Total Imp. Area (SF)	Net Change in Imp. Area (SF)	Proposed Imp. Area with Treatment (SF)	\% Overall New Imp. Area Treated					
0	42,710	42,710	41,686	97.6%					
Table 2 - New Developed Area Treatment									
Existing Dev. Area (SF)						Proposed Total Dev. Area (SF)	Net Change in Dev. Area (SF)	Proposed Dev. Area with Treatment (SF)	\% Overall New Dev. Area Treated
						81,225	81,225	65,000	80%

Grassed Underdrained Soil Filter

The grassed underdrained soil filter was sized to meet or exceed the requirements set forth within the MDEP Volume III BMPs Technical Design Manual, Chapter 7.3. Filter BMP

A C O R N Engineering, Inc. - www.acorn-engineering.com 207-775-2655 • PO Box 3372 • Portland • Maine • 04104
systems have shown to be effective at filtering out and removing a wide range of pollutants from stormwater runoff.
As shown above, the project anticipates meeting the required treatment for new impervious and developed surfaces with the filter BMPs.

Filter Area Sizing

A calculation for sand filter area is necessary to meet the requirements below the surface of the GUSF. As defined in the Volume III: BMPs Technical Design Manual, Chapter 7, the surface area of the filter shall be no less than the sum of 5% of the tributary impervious area and 2% of the tributary vegetated area. The filter area is calculated by the following formula:
$[(I m p . S F x 0.05)+(V e g . ~ S F ~ x ~ 0.02)] ~=~ F i l t e r ~ A r e a ~(S F) ~$
Please refer to Table 2 below.
Table 2 - Total Filter Surface Area, displays the proposed USSF sizing requirements, actual size and the percentage of required area.

Table 3 - Total Filter Surface Area					
	Landscaped Area (SF)	Impervious Area (SF)	Required Filter Area (SF)	Actual Filter Area (SF)	
GUSF	8,500	33,250	1,763	1,850	

As shown, the size of the soil filter area will meet and exceed the surface area requirements.

Water Quality Volume

In accordance with the Volume III: BMPs Technical Design Manual, a water quality volume of 1.0 inches times the tributary impervious area plus 0.4 inches times the tributary vegetated area is required to be treated by the USSF. The water quality volume is calculated by the following formula:

$$
\left(\frac{\text { Imp. SF x } 1.0^{\prime \prime}}{12^{\prime \prime} / 1^{\prime}}\right)+\left(\frac{\text { Veg. SF x } 0.4 "}{12^{\prime \prime} / 1^{\prime}}\right)=\text { Treatment Volume (CF) }
$$

The proposed water quality volume is as follows:

Table 5-Water Quality Volume Table				
	Landscaped Area (SF)	Impervious Area (SF)	Treatment Volume Required (CF)	Treatment Volume Provided (CF)
GUSF	8,500	33,250	3,111	3,638

As shown, the size of the combined water quality volume will meet and exceed the treatment volume requirements. Values from the HydroCAD calculations are attached to this report. The treatment volume was calculated by using the HydroCAD model and the rainfall that produces 18 " of ponding within the pond.

A vertical orifice is modeled in HydroCAD at the end of the underdrain outlet to detain the stormwater for an approximate 24 -hour time frame. The orifice is intended to be a PVC cap placed on the outfall pipe (no glue) with the orifice drilled into the cap eccentrically. The PVC cap can be easily inspected, removed, or replaced if necessary.

Roof Drip edge Filter:

At 2.5' deep with clean, free-draining crushed stone, the new buildings will take the direct entry from the roof runoff before filtering this runoff through media. These systems are oversized in comparison to the tributary roof areas and provide storage for a 10 -year storm or greater before overflowing away from the buildings.

FLOODING STANDARD - WATER QUANTITY

The proposed project was modeled using HydroCAD to verify that the post-development conditions do not exceed the pre-development conditions. A 24-hour SCS Type III storm distribution for the 2,10 , and 25 -year storm events were used. The corresponding rainfall amounts for these storms are 3.10 ", 4.60 ", and 5.80 " respectively. Due to the numerous variables, and inherent inaccuracies with the modeling program used to calculate stormwater runoff it is custom at Acorn Engineering, Inc. to round to the nearest whole number. However due to the small size of the project and the minimal existing flows, the stormwater runoff shall be rounded to the nearest tenth of a cubic feet per second (cfs).

Time of Concentration (Tc)

The times of concentration for subcatchments in both the pre and post conditions were calculated by entering the flow path with the associated ground cover and slopes. HydroCAD then calculated the Tc's and incorporated the total Tc for each subcatchment into the model. When the calculated Tc was less than six minutes (0.1 hours), a direct entry of six minutes was used as advised by the TR-55 model. Consistent with previous submissions and best practices, the sheet flow length for any Tc path was capped at 100 feet.

Curve Number (CN)

Within the pre-development model, the wooded and vegetated ditches were conservatively considered good condition with appropriate underlying soil hydrologic group. In particular, the woods were given a "good" condition throughout the entire development. Based upon the understory, the CN value contained either light underbrush or dense underbrush, depending on the location as verified by multiple site visits. The site generally features denser underbrush towards the back of the parcels and less dense underbrush closer to Washington Avenue. Lastly, the wetlands were modeled as Woods in the D condition in both the pre and post.

The post development landscaped areas were given a good rating within the appropriate underlying hydrologic soil group. This assumption is reinforced given the aggressive landscape plan which will feature more porous conditions that are appropriately mulched

A C O R N Engineering, Inc. - www.acorn-engineering.com
207-775-2655 • PO Box 3372 • Portland • Maine • 04104
along with future extensive root systems and canopy cover that will exist once the landscaping has matured.

Pre-development Calculations

The site consists of wooded area and wetlands in the predevelopment condition, for the purpose of this analysis the land has been divided into six separate sub catchments.

The existing cross culvert underneath Washington Ave, as well as the catch basin outlet for the northern Washington Ave ditch have been included in the model as reaches. The intent of this is to measure the capacity of the existing infrastructure down stream of any proposed peak flow alterations.

Peak flow rates for the pre-development storm events are as follows:

Table 6 - Pre-Development Peak Stormwater Flows			
Drainage Area	2-Year Storm Event (cfs)	10-Year Storm Event (cfs)	25-Year Storm Event (cfs)
POI \#1	4.3	8.8	12.6
POI \#2	0.9	1.6	2.3

Post-development Calculations

The post condition features the same four point of interests that exist in the pre-development condition, but with multiple BMPs throughout the north and south parcel dedicated for the treatment of runoff generated primarily by roof and pavement via porous pavement and the two (2) USSFs. The subcatchments are as follows:
> Subcatchment 1 P - This subcatchment consists of primarily undeveloped woodland that flows to towards Interstate 295. (POA \#1)
$>$ Subcatchment 2 P - This subcatchment consists of a portion of the entrance driveway, patio area and landscaping that is treated by a rain garden and discharges to the Sky View Drive ROW (POA \#2).
$>$ Subcatchment 3 P - This subcatchment consists primarily of parking lot and half the roof area. This subcatchment is collected and piped to the GUSF for treatment and discharges towards Interstate stared 295. (POA \#1)
$>$ Subcatchment 4P - This subcatchment consists of the western side of the roof and is collected and treated in a roof dripline filter adjacent to the building. Overflow from this BMP heads towards Interstate 295. (POA \#1)
> Subcatchment 5 P - This subcatchment consists of a small portion of the roof and is collected and treated in a roof dripline filter adjacent to the building. Overflow from this BMP heads towards the Sky View Drive ROW (POA \#2).
$>$ Subcatchment 6 P - This subcatchment consists of developed area that bypasses treatment on the development site and is collected and drained to the Sky Vie w Drive ROW (POA \#2).

A C O R N Engineering, Inc. - www.acorn-engineering.com
207-775-2655 • PO Box 3372 • Portland • Maine • 04104

The post-development calculations include changes to the land use, and the compensation provided by the GUSF and associated engineered orifices.

The ideology HydroCad uses to model porous pavement assumes the pavement has no surface runoff under ideal conditions and accepts several inches of precipitation. An extended Tc is used to simulate the travel time through the base and the pavement is modelled as a pond which represents storage in the base material.

Table 7 - Post-Development Peak Stormwater Flows			
Drainage Area	2-Year Storm Event (cfs)	10-Year Storm Event (cfs)	25-Year Storm Event (cfs)
POI \#1	3.7	7.4	14.2
POI \#2	. 03	0.7	1.1

The post-development calculations include changes to the land use and the compensation provided by the stormwater BMPs. The following table represents comparison of predevelopment and post-development condition peak runoff rates for the proposed development and tributary area.

Table 8-Comparison of Peak Flows						
POI	$2-Y e a r$ Storm Event (cfs)		$10-Y e a r$ Storm Event (cfs)		$25-$-Year Storm Event (cfs)	
	Pre	Post	Pre	Post	Pre	Post
POI \#1	4.3	3.7	8.8	7.4	12.6	14.2
POI \#2	0.9	0.3	1.6	0.7	2.3	1.1

As shown in Table 7 and 8, the net impact of the post development peak flows will remain at or below the predevelopment levels in all but a small increase in the 25 -year event. Overall the 25 -year event will have a 1.0 CFS increase from the pre-development total of 14.9 CFS to the post-development total of 15.3 CFS. The majority of the increase is towards a large wooded buffer area between the development and Interstate 295, which includes an area that must be maintained as a wooded buffer. There are no anticipated detrimental downstream effects due to this minor increase in flows. The vast majority of storm events will see a decrease in stormwater flows at both points of analysis.

A post-development watershed map developed for this project can be viewed in Attachment B, and a copy of the HydroCAD calculations is included within Attachment C of this report.

SOILS

Onsite soil information includes the following:
> Soil Conservation Service Medium Intensity Soil Survey for Cumberland County

A C O R N Engineering, Inc. - www.acorn-engineering.com
207-775-2655 • PO Box 3372 • Portland • Maine • 04104
> United States Department of Agriculture Web Soil Survey
Given the soils information, listed above, no onsite wastewater is proposed; the applicant does not intend to perform a more intense hydric soil boundary delineation.

CONCLUSION

The proposed development was designed to meet the requirements implemented by the MDEP under the Stormwater Management Statute (38 M.R.S.A. § 420-D). The proposed project as designed is not anticipated to cause flooding or erosion problems within the subject site, abutters' sites, nor within the right-of-way. Overall, the project will provide an improvement to stormwater runoff and overall management from several perspectives as outlined above.

ATTACHMENTS

Attachment A: Pre-Development Watershed Map
Attachment B: Post-Development Watershed Map
Attachment C: HydroCAD Calculations
Attachment D: Soil Survey

1175.1_PRE

Prepared by HP
Printed 10/25/2022
HydroCAD® 10.00-26 s/n 00620 © 2020 HydroCAD Software Solutions LLC

Project Notes

Rainfall events imported from "1176_POST.hcp"
1175.1_PRE

Prepared by HP
Printed 10/25/2022
HydroCAD® 10.00-26 s/n 00620 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.701	80	$>75 \%$ Grass cover, Good, HSG D (1A)
0.589	83	Brush, Poor, HSG D (2A)
3.183	77	Woods, Good, HSG D (1A, 2A)
4.474	$\mathbf{7 8}$	TOTAL AREA

1175.1_PRE

Prepared by HP
Printed 10/25/2022
HydroCAD® 10.00-26 s/n 00620 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
4.474	HSG D	1A, 2A
0.000	Other	
4.474		TOTAL AREA

1175.1_PRE

Prepared by HP Printed 10/25/2022
HydroCAD® 10.00-26 s/n 00620 © 2020 HydroCAD Software Solutions LLC
Page 5

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other $($ acres $)$	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	0.701	0.000	0.701	$>75 \%$ Grass cover, Good	1A
0.000	0.000	0.000	0.589	0.000	0.589	Brush, Poor	2A
0.000	0.000	0.000	3.183	0.000	3.183	Woods, Good	1A, 2A
$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 0}$	$\mathbf{4 . 4 7 4}$	$\mathbf{0 . 0 0 0}$	$\mathbf{4 . 4 7 4}$	TOTAL AREA	

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1A: 1A

Subcatchment2A: 2A

Link POA1: POA \#1

Link POA2: POA \#2

Runoff Area $=159,215$ sf 0.00% Impervious Runoff Depth $>1.10^{\prime \prime}$ Flow Length=465' Tc=10.0 $\mathrm{min} \quad \mathrm{CN}=78$ Runoff=4.33 cfs 0.335 af

Runoff Area=35,658 sf 0.00% Impervious Runoff Depth $>1.28{ }^{\prime \prime}$ Flow Length=352' Tc=22.1 min CN=81 Runoff=0.85 cfs 0.087 af

Inflow=4.33 cfs 0.335 af Primary=4.33 cfs 0.335 af

Inflow $=0.85$ cfs 0.087 af Primary $=0.85$ cfs 0.087 af

Total Runoff Area $=4.474$ ac Runoff Volume $=0.423$ af Average Runoff Depth $=1.13$ " 100.00% Pervious $=4.474$ ac 0.00% Impervious $=0.000$ ac

Summary for Subcatchment 1A: 1A

Runoff $=\quad 4.33$ cfs @ 12.15 hrs, Volume= $\quad 0.335$ af, Depth> 1.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.10"

Summary for Subcatchment 2A: 2A

Runoff $=0.85$ cfs @ 12.32 hrs, Volume $=0.087$ af, Depth> 1.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.10"

Summary for Link POA1: POA \#1

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1A: 1A

Subcatchment2A: 2A

Link POA1: POA \#1

Link POA2: POA \#2

Runoff Area $=159,215$ sf 0.00% Impervious Runoff Depth >2.21 " Flow Length=465' Tc=10.0 $\mathrm{min} \mathrm{CN}=78$ Runoff=8.78 cfs 0.672 af

Runoff Area=35,658 sf 0.00% Impervious Runoff Depth $>2.45^{\prime \prime}$ Flow Length=352' Tc=22.1 min CN=81 Runoff=1.63 cfs 0.167 af

Inflow=8.78 cfs 0.672 af Primary $=8.78$ cfs 0.672 af

Inflow=1.63 cfs 0.167 af Primary=1.63 cfs 0.167 af

Total Runoff Area $=4.474$ ac Runoff Volume $=0.839$ af Average Runoff Depth $=2.25$ " 100.00% Pervious $=4.474$ ac 0.00% Impervious $=0.000$ ac

Summary for Subcatchment 1A: 1A

Runoff $=\quad 8.78$ cfs @ 12.15 hrs, Volume $=\quad 0.672$ af, Depth> 2.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.60"

Area (sf) CN Description					
$\begin{array}{r} 128,675 \\ 30,540 \end{array}$			Woods, Good, HSG D $>75 \%$ Grass cover, Good, HSG D		
$\begin{aligned} & 159,215 \\ & 159,215 \end{aligned}$		78	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \\ \hline \end{array}$	Description
6.9	100	0.0500	0.24		Sheet Flow, A TO B SHEET Grass: Short $n=0.150 \quad P 2=3.10^{\prime \prime}$
3.1	365	0.1500	1.94		Shallow Concentrated Flow, B TO C Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
10.0	465	Total			

Summary for Subcatchment 2A: 2A

Runoff $=1.63$ cfs @ 12.31 hrs, Volume= 0.167 af, Depth> 2.45"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.60"

Summary for Link POA1: POA \#1

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1A: 1A

Subcatchment2A: 2A

Link POA1: POA \#1

Link POA2: POA \#2

Runoff Area $=159,215$ sf 0.00% Impervious Runoff Depth $>3.18^{\prime \prime}$ Flow Length=465' Tc=10.0 min CN=78 Runoff=12.58 cfs 0.967 af

Runoff Area=35,658 sf 0.00% Impervious Runoff Depth $>3.45^{\prime \prime}$ Flow Length=352' Tc=22.1 min CN=81 Runoff=2.29 cfs 0.236 af

Inflow=12.58 cfs 0.967 af Primary $=12.58$ cfs 0.967 af

Inflow=2.29 cfs 0.236 af Primary=2.29 cfs 0.236 af

Total Runoff Area $=4.474$ ac Runoff Volume $=1.203$ af Average Runoff Depth $=3.23$ " 100.00% Pervious $=4.474$ ac 0.00% Impervious $=0.000$ ac

Summary for Subcatchment 1A: 1A

Runoff $=\quad 12.58$ cfs @ 12.14 hrs, Volume $=\quad 0.967$ af, Depth> 3.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=5.80"

Summary for Subcatchment 2A: 2A

Runoff $=\quad 2.29$ cfs @ 12.30 hrs, Volume= 0.236 af, Depth> $3.45{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25 -year Rainfall=5.80"

Summary for Link POA1: POA \#1

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1A: 1A

Subcatchment2A: 2A

Link POA1: POA \#1

Link POA2: POA \#2

Runoff Area $=159,215$ sf 0.00% Impervious Runoff Depth $>1.31^{\prime \prime}$ Flow Length=465' Tc=10.0 $\mathrm{min} \mathrm{CN}=78$ Runoff=5.18 cfs 0.399 af

Runoff Area=35,658 sf 0.00% Impervious Runoff Depth >1.50 " Flow Length=352' Tc=22.1 min CN=81 Runoff=1.00 cfs 0.102 af

Inflow=5.18 cfs 0.399 af Primary=5.18 cfs 0.399 af

Inflow=1.00 cfs 0.102 af Primary $=1.00$ cfs 0.102 af

Total Runoff Area $=4.474$ ac Runoff Volume $=0.501$ af Average Runoff Depth $=1.34$ " 100.00% Pervious $=4.474$ ac 0.00% Impervious $=0.000$ ac

Summary for Subcatchment 1A: 1A

Runoff $=\quad 5.18$ cfs @ 12.15 hrs, Volume $=\quad 0.399$ af, Depth> $1.31^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr Custom Rainfall=3.40"

Area (sf) CN Description					
$\begin{array}{r} 128,675 \\ 30,540 \end{array}$			Woods, Good, HSG D $>75 \%$ Grass cover, Good, HSG D		
$\begin{aligned} & 159,215 \\ & 159,215 \end{aligned}$		78	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \\ \hline \end{array}$	Description
6.9	100	0.0500	0.24		Sheet Flow, A TO B SHEET Grass: Short $n=0.150 \quad P 2=3.10^{\prime \prime}$
3.1	365	0.1500	1.94		Shallow Concentrated Flow, B TO C Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
10.0	465	Total			

Summary for Subcatchment 2A: 2A

Runoff $=1.00$ cfs @ 12.31 hrs, Volume= 0.102 af, Depth> 1.50"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr Custom Rainfall= $=3.40$

Area (sf)		CN Description			
	$\begin{array}{r} 9,998 \\ 25,660 \\ \hline \end{array}$	$\begin{aligned} & \hline 77 \\ & 83 \\ & \hline \end{aligned}$	oods, G rush, Poo	$\begin{aligned} & \text { od, HSG D } \\ & \text {,HSG D } \end{aligned}$	
$\begin{aligned} & 35,658 \\ & 35,658 \end{aligned}$		81	Veighted Average 00.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
19.1	100	0.0100	0.09		Sheet Flow, A TO B SHEET Grass: Dense n=0.240 P2=3.10"
3.0	252	0.0400	1.40		Shallow Concentrated Flow, B TO C Short Grass Pasture Kv=7.0 fps
22.1	352	Total			

Summary for Link POA1: POA \#1

Inflow Area $=$	3.655 ac,	0.00% Impervious, Inflow Depth $>1.31 " \quad$ for Custom event		
Inflow	$=$	$5.18 \mathrm{cfs} @$	12.15 hrs, Volume $=$	0.399 af
Primary	$=$	$5.18 \mathrm{cfs} @$	12.15 hrs, Volume $=$	0.399 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span $=5.00-20.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1A: 1A

Subcatchment2A: 2A

Link POA1: POA \#1

Link POA2: POA \#2

Runoff Area $=159,215$ sf 0.00% Impervious Runoff Depth >0.05 " Flow Length=465' Tc=10.0 $\mathrm{min} \mathrm{CN}=78$ Runoff $=0.07 \mathrm{cfs} 0.015$ af

Runoff Area=35,658 sf 0.00% Impervious Runoff Depth >0.08 " Flow Length=352' Tc=22.1 min CN=81 Runoff=0.03 cfs 0.006 af

Inflow=0.07 cfs 0.015 af Primary $=0.07$ cfs 0.015 af

Inflow $=0.03$ cfs 0.006 af Primary $=0.03$ cfs 0.006 af

Total Runoff Area $=4.474$ ac Runoff Volume $=0.020$ af Average Runoff Depth $=0.05$ " 100.00% Pervious $=4.474$ ac 0.00% Impervious $=0.000$ ac

Summary for Subcatchment 1A: 1A

Runoff $=\quad 0.07$ cfs @ 12.46 hrs, Volume $=\quad 0.015$ af, Depth> $0.05{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQ Rainfall=1.00"

Area (sf) CN Description					
$\begin{array}{r} 128,675 \\ 30,540 \end{array}$		$\begin{aligned} & \hline 77 \\ & 80 \end{aligned}$	Woods, Good, HSG D $>75 \%$ Grass cover, Good, HSG D		
$\begin{aligned} & 159,215 \\ & 159,215 \end{aligned}$		78	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
6.9	100	0.0500	0.24		Sheet Flow, A TO B SHEET Grass: Short $n=0.150 \quad P 2=3.10^{\prime \prime}$
3.1	365	0.1500	1.94		Shallow Concentrated Flow, B TO C Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
10.0	465	Total			

Summary for Subcatchment 2A: 2A

Runoff $=\quad 0.03$ cfs @ 12.53 hrs, Volume $=0.006$ af, Depth> 0.08"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQ Rainfall=1.00"
$\left.\begin{array}{rrll}\text { Area (sf) } & \text { CN } & \text { Description } \\ \begin{array}{rrrrl}9,998 \\ 25,660\end{array} & 77 & \text { Woods, Good, HSG D } \\ 83 & \text { Brush, Poor, HSG D }\end{array}\right]$

Summary for Link POA1: POA \#1

Inflow Area $=$	3.655 ac,	0.00% Impervious, Inflow Depth $>0.05 \mathrm{c}$ for WQ event		
Inflow	$=$	$0.07 \mathrm{cfs} @$	12.46 hrs, Volume $=$	0.015 af
Primary	$=$	$0.07 \mathrm{cfs} @$	12.46 hrs, Volume $=$	0.015 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1A: 1A

Subcatchment2A: 2A

Link POA1: POA \#1

Link POA2: POA \#2

Runoff Area $=159,215$ sf 0.00% Impervious Runoff Depth >1.94 " Flow Length=465' Tc=10.0 $\mathrm{min} \mathrm{CN}=78$ Runoff=7.73 cfs 0.592 af

Runoff Area=35,658 sf 0.00% Impervious Runoff Depth $>2.17^{\prime \prime}$ Flow Length=352' Tc=22.1 min CN=81 Runoff=1.45 cfs 0.148 af

Inflow=7.73 cfs 0.592 af Primary=7.73 cfs 0.592 af

Inflow=1.45 cfs 0.148 af Primary $=1.45$ cfs 0.148 af

Total Runoff Area $=4.474$ ac Runoff Volume $=0.740$ af Average Runoff Depth $=1.98$ " 100.00% Pervious $=4.474$ ac 0.00% Impervious $=0.000$ ac

Summary for Subcatchment 1A: 1A

Runoff $=\quad 7.73$ cfs @ 12.15 hrs, Volume $=\quad 0.592$ af, Depth> $1.94{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF Rainfall=4.26"

Area (sf) CN Description					
$\begin{array}{r} 128,675 \\ 30,540 \end{array}$			Woods, Good, HSG D $>75 \%$ Grass cover, Good, HSG D		
$\begin{aligned} & 159,215 \\ & 159,215 \end{aligned}$		78	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \\ \hline \end{array}$	Description
6.9	100	0.0500	0.24		Sheet Flow, A TO B SHEET Grass: Short $n=0.150 \quad P 2=3.10^{\prime \prime}$
3.1	365	0.1500	1.94		Shallow Concentrated Flow, B TO C Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
10.0	465	Total			

Summary for Subcatchment 2A: 2A

Runoff $=\quad 1.45$ cfs @ 12.31 hrs, Volume= $\quad 0.148$ af, Depth> 2.17"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF Rainfall=4.26"

Summary for Link POA1: POA \#1

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Inflow Area $=$	0.819 ac,	0.00% Impervious, Inflow Depth $>$	$2.17 "$ for WQV USSF event	
Inflow	$=$	$1.45 \mathrm{cfs} @$	12.31 hrs , Volume $=$	0.148 af
Primary	$=$	$1.45 \mathrm{cfs} @$	12.31 hrs , Volume $=$	0.148 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1A: 1A

Subcatchment2A: 2A

Link POA1: POA \#1

Link POA2: POA \#2

Runoff Area $=159,215$ sf 0.00% Impervious Runoff Depth >1.94 " Flow Length=465' Tc=10.0 $\mathrm{min} \mathrm{CN}=78$ Runoff=7.73 cfs 0.592 af

Runoff Area=35,658 sf 0.00% Impervious Runoff Depth $>2.17^{\prime \prime}$ Flow Length=352' Tc=22.1 min CN=81 Runoff=1.45 cfs 0.148 af

Inflow=7.73 cfs 0.592 af Primary=7.73 cfs 0.592 af

Inflow=1.45 cfs 0.148 af Primary $=1.45$ cfs 0.148 af

Total Runoff Area $=4.474$ ac Runoff Volume $=0.740$ af Average Runoff Depth $=1.98$ " 100.00% Pervious $=4.474$ ac 0.00% Impervious $=0.000$ ac

Summary for Subcatchment 1A: 1A

Runoff $=\quad 7.73$ cfs @ 12.15 hrs, Volume $=\quad 0.592$ af, Depth> 1.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 1 Rainfall=4.26"

Area (sf) CN Description					
$\begin{array}{r} 128,675 \\ 30,540 \end{array}$		$\begin{aligned} & \hline 77 \\ & 80 \end{aligned}$	Woods, Good, HSG D $>75 \%$ Grass cover, Good, HSG D		
$\begin{aligned} & 159,215 \\ & 159,215 \end{aligned}$		78	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
6.9	100	0.0500	0.24		Sheet Flow, A TO B SHEET Grass: Short $n=0.150 \quad P 2=3.10^{\prime \prime}$
3.1	365	0.1500	1.94		Shallow Concentrated Flow, B TO C Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
10.0	465	Total			

Summary for Subcatchment 2A: 2A

Runoff $=\quad 1.45 \mathrm{cfs} @ 12.31 \mathrm{hrs}$, Volume= $\quad 0.148$ af, Depth> 2.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 1 Rainfall=4.26"

Summary for Link POA1: POA \#1

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1A: 1A

Subcatchment2A: 2A

Link POA1: POA \#1

Link POA2: POA \#2

Runoff Area $=159,215$ sf 0.00% Impervious Runoff Depth $>1.20^{\prime \prime}$ Flow Length=465' Tc=10.0 $\mathrm{min} \quad \mathrm{CN}=78$ Runoff=4.72 cfs 0.365 af

Runoff Area=35,658 sf 0.00% Impervious Runoff Depth $>1.38^{\prime \prime}$ Flow Length=352' Tc=22.1 min CN=81 Runoff=0.92 cfs 0.094 af

Inflow=4.72 cfs 0.365 af Primary=4.72 cfs 0.365 af

Inflow=0.92 cfs 0.094 af Primary $=0.92$ cfs 0.094 af

Total Runoff Area $=4.474$ ac Runoff Volume $=0.459$ af Average Runoff Depth $=1.23$ " 100.00% Pervious $=4.474$ ac 0.00% Impervious $=0.000$ ac

Summary for Subcatchment 1A: 1A

Runoff $=\quad 4.72$ cfs @ 12.15 hrs, Volume $=\quad 0.365$ af, Depth> $1.20^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 2 Rainfall=3.24"

Area (sf) CN Description					
$\begin{array}{r} 128,675 \\ 30,540 \end{array}$			Woods, Good, HSG D $>75 \%$ Grass cover, Good, HSG D		
$\begin{aligned} & 159,215 \\ & 159,215 \end{aligned}$		78	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \\ \hline \end{array}$	Description
6.9	100	0.0500	0.24		Sheet Flow, A TO B SHEET Grass: Short $n=0.150 \quad P 2=3.10^{\prime \prime}$
3.1	365	0.1500	1.94		Shallow Concentrated Flow, B TO C Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
10.0	465	Total			

Summary for Subcatchment 2A: 2A

Runoff $=\quad 0.92$ cfs @ 12.32 hrs, Volume $=0.094$ af, Depth> 1.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 2 Rainfall=3.24"
$\left.\begin{array}{rrll}\text { Area (sf) } & \text { CN } & \text { Description } \\ \begin{array}{rrrrl}9,998 \\ 25,660\end{array} & 77 & \text { Woods, Good, HSG D } \\ 83 & \text { Brush, Poor, HSG D }\end{array}\right]$

Summary for Link POA1: POA \#1

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Inflow Area $=$	0.819 ac,	0.00% Impervious, Inflow Depth > 1.38 n for WQV USSF 2 event	
Inflow	$=$	$0.92 \mathrm{cfs} @$	12.32 hrs , Volume $=$
Primary	$=$	$0.92 \mathrm{cfs} @$	12.32 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

1175.1_POST

Prepared by HP
Printed 10/25/2022
HydroCAD® 10.00-26 s/n 00620 © 2020 HydroCAD Software Solutions LLC
Page 2

Project Notes

Rainfall events imported from "1176_POST.hcp"
1175.1_POST

Prepared by HP
Printed 10/25/2022
HydroCAD® 10.00-26 s/n 00620 © 2020 HydroCAD Software Solutions LLC

Area Listing (selected nodes)

Area (acres)	CN	Description (subcatchment-numbers)
1.607	80	$>75 \%$ Grass cover, Good, HSG D (1P, 2P, 3P, 6P)
0.057	98	DRIVE/WALK (2P)
0.335	98	HALF BUILDING (3P, 4P, 5P)
0.603	98	PAVE (3P, 6P)
0.029	98	SIDEWALK (3P)
1.844	77	Woods, Good, HSG D (1P)
4.474	83	TOTAL AREA

1175.1_POST

Prepared by HP
Printed 10/25/2022
HydroCAD® 10.00-26 s/n 00620 © 2020 HydroCAD Software Solutions LLC

Soil Listing (selected nodes)

Area $($ acres $)$	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
3.451	HSG D	1P, 2P, 3P, 6P
1.023	Other	2P, 3P, 4P, 5P, 6P
4.474		TOTAL AREA

1175.1_POST

Prepared by HP
Printed 10/25/2022
HydroCAD® 10.00-26 s/n 00620 © 2020 HydroCAD Software Solutions LLC

Ground Covers (selected nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D $($ acres $)$	Other $($ acres $)$	Total $($ acres $)$	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	1.607	0.000	1.607	$>75 \%$ Grass cover, Good $1 \mathrm{P}, 2 \mathrm{P}$,	
							$3 \mathrm{P}, 6 \mathrm{P}$
0.000	0.000	0.000	0.000	0.057	0.057	DRIVE/WALK	2P
0.000	0.000	0.000	0.000	0.335	0.335	HALF BUILDING	$3 \mathrm{P}, 4 \mathrm{P}$,
							5 P
0.000	0.000	0.000	0.000	0.603	0.603	PAVE	3P, 6P
0.000	0.000	0.000	0.000	0.029	0.029	SIDEWALK	3P
0.000	0.000	0.000	1.844	0.000	1.844	Woods, Good	1 P
$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 0}$	$\mathbf{3 . 4 5 1}$	$\mathbf{1 . 0 2 3}$	$\mathbf{4 . 4 7 4}$	TOTAL AREA	

1175.1_POST

Prepared by HP
Printed 10/25/2022
HydroCAD® 10.00-26 s/n 00620 © 2020 HydroCAD Software Solutions LLC Page 6

Pipe Listing (selected nodes)

Line\#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	P1	114.00	112.00	60.0	0.0333	0.010	12.0	0.0	0.0
2	P2	115.90	115.65	24.0	0.0104	0.011	4.0	0.0	0.0

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1P: 1P	Runoff Area=129,181 sf 0.00% Impervious Runoff Depth $>1.10^{\prime \prime}$ Flow Length $=400$ ' $\mathrm{Tc}=9.5 \mathrm{~min} \mathrm{CN}=78$ Runoff $=3.56 \mathrm{cfs} 0.272$ af
Subcatchment2P: P2	Runoff Area=7,295 sf 34.13% Impervious Runoff Depth >1.62 " Flow Length=352' $\mathrm{Tc}=22.1 \mathrm{~min} \mathrm{CN}=86$ Runoff $=0.22 \mathrm{cfs} 0.023 \mathrm{af}$
Subcatchment 3P: 3P	Runoff Area=42,669 sf 77.97% Impervious Runoff Depth >2.31 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=94$ Runoff $=2.64 \mathrm{cfs} 0.189$ af
Subcatchment 4P: 4P	Runoff Area $=6,503$ sf 100.00% Impervious Runoff Depth>2.68" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.44 \mathrm{cfs} 0.033$ af
Subcatchment 5P: 5P	Runoff Area $=1,762$ sf 100.00% Impervious Runoff Depth>2.68" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.12 \mathrm{cfs} 0.009$ af
Subcatchment6P: 6P	Runoff Area $=7,490$ sf $\quad 7.42 \%$ Impervious Runoff Depth >1.29 " Tc $=6.0 \mathrm{~min} \quad \mathrm{CN}=81$ Runoff $=0.27 \mathrm{cfs} 0.018$ af
Reach 2R: R1	Avg. Flow Depth=0.10' Max Vel=0.28 fps Inflow=0.24 cfs 0.144 af $\mathrm{n}=0.400 \mathrm{~L}=100.0$ ' $\mathrm{S}=0.2200$ '/' Capacity $=35.42 \mathrm{cfs} \quad$ Outflow= $0.24 \mathrm{cfs} \quad 0.142$ af
Pond P1: P1	Peak Elev=118.70' Storage=3,944 cf Inflow=2.64 cfs 0.189 af Primary $=0.24$ cfs 0.144 af Secondary $=0.00$ cfs 0.000 af Outflow= 0.24 cfs 0.144 af
Pond P2: Rain Garden	Peak Elev=117.89' Storage $=360$ cf Inflow= 0.22 cfs 0.023 af Discarded $=0.06$ cfs 0.022 af Primary $=0.00$ cfs 0.000 af Outflow $=0.06$ cfs 0.022 af
Pond P3: Drip Edge	Peak Elev=121.92' Storage $=776$ cf $\begin{array}{r}\text { Inflow }=0.44 \text { cfs } 0.033 \text { af } \\ \text { Outflow }=0.02 \text { cfs } 0.019 \text { af }\end{array}$
Pond P4: Drip Edge	Peak Elev=122.22' Storage=218 cf $\begin{array}{r}\text { Inflow }=0.12 \text { cfs } 0.009 \text { af } \\ \text { Outflow }=0.00 \text { cfs } 0.005 \text { af }\end{array}$
Link POA1: POA \#1	Inflow=3.69 cfs 0.414 af Primary $=3.69$ cfs 0.414 af
Link POA2: POA \#2	$\begin{aligned} & \text { Inflow=}=0.30 \text { cfs } \quad 0.043 \mathrm{af} \\ & \text { Primary }=0.30 \text { cfs } \\ & 0.043 \mathrm{af} \end{aligned}$

Total Runoff Area $=4.474$ ac Runoff Volume $=0.545$ af Average Runoff Depth $=1.46$ "
77.13% Pervious $=3.451$ ac 22.87% Impervious $=1.023$ ac

Summary for Subcatchment 1P: 1P

Runoff $=\quad 3.56$ cfs @ 12.14 hrs, Volume $=\quad 0.272$ af, Depth> 1.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.10"

Summary for Subcatchment 2P: P2

Runoff $=\quad 0.22$ cfs @ 12.31 hrs, Volume= 0.023 af, Depth> 1.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.10"

	Area (sf)	CN	Description		
A	$\begin{array}{r} 2,490 \\ 4,805 \\ \hline \end{array}$	$\begin{array}{ll} 98 \\ 80 \\ 8 \end{array}$	DRIVE/WALK$>75 \%$ Grass cover, Good, HSG D		
	$\begin{aligned} & 7,295 \\ & 4,805 \\ & 2,490 \end{aligned}$	86	Weighted Average 65.87\% Pervious Area 34.13\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
19.1	100	0.0100	0.09		Sheet Flow, A TO B SHEET Grass: Dense n=0.240 P2=3.10"
3.0	- 252	0.0400	1.40		Shallow Concentrated Flow, B TO C Short Grass Pasture Kv=7.0 fps
22.1	352	Total			

Summary for Subcatchment 3P: 3P

```
Runoff = 2.64 cfs @ 12.09 hrs, Volume= 0.189 af, Depth> 2.31"
```

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.10"

	Area (sf)	CN	Description
$*$	25,690	98	PAVE
$*$	6,320	98	HALF BUILDING
$*$	9,401	80	$>75 \%$ Grass cover, Good, HSG D
1,258	98	SIDEWALK	
42,669	94	Weighted Average	
9,401		22.03\% Pervious Area	
	33,268		77.97% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment 4P: 4P

Runoff $=0.44$ cfs @ 12.09 hrs, Volume= 0.033 af, Depth> 2.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.10"

	Area (sf)	CN	Description
6,503 98 HALF BUILDING 6,503 100.00% Impervious Area.			

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 5P: 5P
Runoff $=\quad 0.12$ cfs @ 12.09 hrs, Volume $=0.009$ af, Depth> 2.68"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.10"

	rea (sf)	CN Description			
*	1,762	98	ALF BUIL	DING	
1,762		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 6P: 6P
Runoff $=\quad 0.27$ cfs @ 12.10 hrs, Volume= 0.018 af, Depth> 1.29"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.10"

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Max. Velocity $=0.28 \mathrm{fps}$, Min. Travel Time $=5.9 \mathrm{~min}$
Avg. Velocity $=0.21 \mathrm{fps}$, Avg. Travel Time $=7.8 \mathrm{~min}$
Peak Storage= 83 cf @ 13.07 hrs
Average Depth at Peak Storage= 0.10^{\prime}
Bank-Full Depth= 1.00 Flow Area= 26.7 sf, Capacity= 35.42 cfs
40.00 ' $\times 1.00$ deep Parabolic Channel, $n=0.400$

Length= 100.0' Slope= 0.2200 '/'
Inlet Invert= 102.00', Outlet Invert= 80.00'

Summary for Pond P1: P1

Inflow Area =	0.980 ac, 77.97% Impervious, Inflow Depth > 2.31" for 2-year event			
Inflow	2.64 cfs @	12.09 hrs , Volume=	0.189 af	
Outflow	0.24 cfs @	13.00 hrs , Volume=	0.144 af,	Atten $=91 \%$, Lag $=54.6 \mathrm{~min}$
Primary	0.24 cfs @	13.00 hrs , Volume=	0.144 af	
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 118.70' @ 13.00 hrs Surf.Area= 3,129 sf Storage= 3,944 cf
Plug-Flow detention time= 169.8 min calculated for 0.144 af (76% of inflow)
Center-of-Mass det. time $=111.9 \mathrm{~min}$ (870.6-758.8)

Summary for Pond P2: Rain Garden

Inflow Area =	0.167 ac, 34.13\% Impervious, Inflow Depth > 1.62" for 2-year event			
Inflow	0.22 cfs @	12.31 hrs , Volume=	0.023 af	
Outflow	0.06 cfs @	12.92 hrs , Volume=	0.022 af,	Atten $=74 \%, L a g=36.5 \mathrm{~min}$
Discarded	0.06 cfs @	12.40 hrs , Volume=	0.022 af	
Primary	0.00 cfs @	12.92 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 117.89' @ 12.92 hrs Surf.Area= 1,038 sf Storage= 360 cf
Plug-Flow detention time $=90.4$ min calculated for 0.022 af (97% of inflow)
Center-of-Mass det. time= $79.6 \min (881.1-801.5)$

Summary for Pond P3: Drip Edge

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2
Peak Elev= 121.92' @ 14.88 hrs Surf.Area= 800 sf Storage= 776 cf
Plug-Flow detention time $=162.9 \mathrm{~min}$ calculated for 0.019 af (58% of inflow)
Center-of-Mass det. time $=79.8 \mathrm{~min}$ (818.6-738.9)

Summary for Pond P4: Drip Edge

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 122.22' @ 15.15 hrs Surf.Area= 200 sf Storage= 218 cf
Plug-Flow detention time= 162.1 min calculated for 0.005 af (54% of inflow)
Center-of-Mass det. time= 74.9 min (813.7-738.9)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	119.50^{\prime}	280 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		700 cf Overall $\times 40.0 \%$ Voids	

Primary OutFlow Max=0.00 cfs @ 9.55 hrs HW=119.54' (Free Discharge)
-1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)
-2=Exfiltration (Exfiltration Controls 0.00 cfs)

Summary for Link POA1: POA \#1

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1P: 1P	Runoff Area=129,181 sf 0.00% Impervious Runoff Depth >2.21 " Flow Length=400' $\mathrm{Tc}=9.5 \mathrm{~min} \quad \mathrm{CN}=78$ Runoff $=7.22 \mathrm{cfs} 0.545$ af
Subcatchment2P: P2	Runoff Area=7,295 sf 34.13% Impervious Runoff Depth >2.90 " Flow Length=352' $\mathrm{Tc}=22.1 \mathrm{~min} \mathrm{CN}=86$ Runoff= 0.39 cfs 0.040 af
Subcatchment 3P: 3P	Runoff Area=42,669 sf 77.97% Impervious Runoff Depth >3.69 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=94$ Runoff=$=4.10 \mathrm{cfs} 0.302 \mathrm{af}$
Subcatchment4P: 4P	Runoff Area $=6,503$ sf 100.00% Impervious Runoff Depth >4.05 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=06 \mathrm{cfs} 0.050$ af
Subcatchment5P: 5P	Runoff Area $=1,762$ sf 100.00% Impervious Runoff Depth >4.05 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.18 \mathrm{cfs} 0.014$ af
Subcatchment6P: 6P	Runoff Area=7,490 sf $\quad 7.42 \%$ Impervious Runoff Depth >2.46 " Tc $=6.0 \mathrm{~min} \mathrm{CN}=81$ Runoff $=0.52 \mathrm{cfs} 0.035$ af
Reach 2R: R1	Avg. Flow Depth=0.29' Max Vel=0.58 fps Inflow=2.75 cfs 0.244 af $\mathrm{n}=0.400 \mathrm{~L}=100.0$ ' $\mathrm{S}=0.2200$ '/' Capacity $=35.42 \mathrm{cfs}$ Outflow=2.43 cfs 0.242 af
Pond P1: P1	Peak Elev=118.87' Storage=4,494 cf Inflow=4.10 cfs 0.302 af Primary $=0.64$ cfs 0.193 af Secondary $=2.11$ cfs 0.051 af Outflow= 2.75 cfs 0.244 af
Pond P2: Rain Garden	Peak Elev=118.62' Storage=670 cf Inflow=0.39 cfs 0.040 af Discarded $=0.09$ cfs 0.036 af Primary $=0.10$ cfs 0.001 af Outflow $=0.19$ cfs 0.038 af
Pond P3: Drip Edge	Peak Elev=122.51' Storage $=963$ cf $\begin{aligned} & \text { Inflow }=0.66 \text { cfs } 0.050 \text { af } \\ & \text { Outflow }=0.41 \text { cfs } 0.031 \text { af }\end{aligned}$
Pond P4: Drip Edge	Peak Elev=122.50' Storage=240 cf Inflow=0.18 cfs 0.014 af Outflow=0.10 cfs 0.008 af
Link POA1: POA \#1	Inflow=7.41 cfs 0.787 af Primary=7.41 cfs 0.787 af
Link POA2: POA \#2	Inflow $=0.70$ cfs 0.076 af Primary $=0.70$ cfs 0.076 af

Total Runoff Area $=4.474$ ac Runoff Volume $=0.987$ af Average Runoff Depth $=2.65$ " 77.13% Pervious = 3.451 ac 22.87% Impervious = 1.023 ac

Summary for Subcatchment 1P: 1P

Runoff $=\quad 7.22$ cfs @ 12.14 hrs, Volume $=0.545$ af, Depth> $2.21{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.60"

Area (sf) CN Description					
$\begin{aligned} & 80,321 \\ & 48,860 \end{aligned}$		$\begin{aligned} & 77 \\ & 80 \end{aligned}$	Woods, Good, HSG D $>75 \%$ Grass cover, Good, HSG D		
$\begin{aligned} & 129,181 \\ & 129,181 \end{aligned}$		78	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.9	100	0.0500	0.24		Sheet Flow, A TO B SHEET Grass: Short $n=0.150 \quad P 2=3.10 "$
2.6	300	0.1500	1.94		Shallow Concentrated Flow, B TO C Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
9.5	400	Total			

Summary for Subcatchment 2P: P2

Runoff $=\quad 0.39$ cfs @ 12.30 hrs, Volume $=0.040$ af, Depth> 2.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.60"

	Area (sf)	CN	Description		
A	$\begin{array}{r} 2,490 \\ 4,805 \\ \hline \end{array}$	$\begin{array}{ll} 98 \\ 80 \\ 8 \end{array}$	DRIVE/WALK$>75 \%$ Grass cover, Good, HSG D		
	$\begin{aligned} & 7,295 \\ & 4,805 \\ & 2,490 \end{aligned}$	86	Weighted Average 65.87\% Pervious Area 34.13\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
19.1	100	0.0100	0.09		Sheet Flow, A TO B SHEET Grass: Dense n=0.240 P2=3.10"
3.0	- 252	0.0400	1.40		Shallow Concentrated Flow, B TO C Short Grass Pasture Kv=7.0 fps
22.1	352	Total			

Summary for Subcatchment 3P: 3P

```
Runoff = 4.10 cfs @ 12.09 hrs, Volume= 0.302 af, Depth> 3.69"
```

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.60"

	Area (sf)	CN	Description
$*$	25,690	98	PAVE
$*$	6,320	98	HALF BUILDING
$*$	9,401	80	$>75 \%$ Grass cover, Good, HSG D
1,258	98	SIDEWALK	
42,669	94	Weighted Average	
9,401		22.03\% Pervious Area	
	33,268		77.97% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment 4P: 4P

Runoff $=0.66$ cfs @ 12.09 hrs, Volume= 0.050 af, Depth> 4.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.60"

	Area (sf)	CN	Description
6,503	98	HALF BUILDING	
		100.00% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 5P: 5P
Runoff $=\quad 0.18$ cfs @ 12.09 hrs, Volume $=\quad 0.014$ af, Depth> 4.05"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.60"

	ea (sf)	CN Description			
*	1,762	98	HALF BUIL	DING	
1,762		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 6P: 6P
Runoff $=\quad 0.52$ cfs @ 12.09 hrs, Volume= 0.035 af, Depth> 2.46"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.60"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| * | 556 | 98 |
| ---: | ---: | :--- |
| PAVE | | |
| 6,934 | 80 | $>75 \%$ Grass cover, Good, HSG D |
| 7,490 | 81 | Weighted Average |
| 6,934 | | 92.58\% Pervious Area |
| 556 | | 7.42% Impervious Area |

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Sirect Entry, |
| :--- |
| 6.0 |
| |
| |

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Max. Velocity $=0.58 \mathrm{fps}$, Min. Travel Time $=2.9 \mathrm{~min}$
Avg. Velocity $=0.24 \mathrm{fps}$, Avg. Travel Time $=6.9 \mathrm{~min}$
Peak Storage= 419 cf @ 12.25 hrs
Average Depth at Peak Storage= 0.29 '
Bank-Full Depth= 1.00 ' Flow Area= 26.7 sf, Capacity= 35.42 cfs
40.00 ' x 1.00 ' deep Parabolic Channel, $n=0.400$

Length= 100.0' Slope= 0.2200 '/'
Inlet Invert= 102.00', Outlet Invert= 80.00'

Summary for Pond P1: P1

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 118.87' @ 12.20 hrs Surf.Area= 3,272 sf Storage= 4,494 cf
Plug-Flow detention time= 117.9 min calculated for 0.244 af (81% of inflow)
Center-of-Mass det. time $=65.3 \mathrm{~min}(815.1-749.8)$

Primary OutFlow Max=0.63 cfs @ 12.20 hrs HW=118.87' (Free Discharge)
$1=$ Culvert (Passes 0.63 cfs of 4.16 cfs potential flow)
-2=Exfiltration (Exfiltration Controls 0.18 cfs)
$\complement_{3}=$ Orifice/Grate (Orifice Controls 0.45 cfs @ 1.77 fps)
Secondary OutFlow Max=2.07 cfs @ 12.20 hrs HW=118.87' (Free Discharge)
$4_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~}^{2.07}$ cfs @ 0.86 fps)

Summary for Pond P2: Rain Garden

Inflow Area =	0.167 ac, 34.13% Impervious, Inflow Depth > 2.90" for 10-year event			
Inflow	0.39 cfs @	12.30 hrs , Volume=	0.040 af	
Outflow	0.19 cfs @	12.71 hrs, Volume=	0.038 af,	Atten $=52 \%, L a g=24.7 \mathrm{~min}$
Discarded	0.09 cfs @	12.71 hrs, Volume=	0.036 af	
Primary	0.10 cfs @	12.71 hrs, Volume=	0.001 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 118.62' @ 12.71 hrs Surf.Area= 1,576 sf Storage= 670 cf
Plug-Flow detention time $=90.3 \mathrm{~min}$ calculated for 0.038 af (93% of inflow)
Center-of-Mass det. time $=67.3 \mathrm{~min}(855.4-788.1)$

Summary for Pond P3: Drip Edge

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2
Peak Elev= 122.51' @ 12.30 hrs Surf.Area= 800 sf Storage= 963 cf
Plug-Flow detention time $=127.9 \mathrm{~min}$ calculated for 0.031 af (62% of inflow)
Center-of-Mass det. time $=49.7 \mathrm{~min}(785.3-735.6)$

Summary for Pond P4: Drip Edge

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 122.50' @ 12.20 hrs Surf.Area= 200 sf Storage= 240 cf
Plug-Flow detention time $=123.1$ min calculated for 0.008 af (62% of inflow)
Center-of-Mass det. time= $45.8 \mathrm{~min}(781.4-735.6)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	119.50	280 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		700 cf Overall $\times 40.0 \%$ Voids	

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
119.50	200	0	0
123.00	200	700	700

Device	Routing	Invert	Outlet Devices
\#1	Primary	122.50'	125.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80
			2.503 .00
			Coef. (English) $2.692 .722 .75 \quad 2.85 \quad 2.983 .083 .203 .283 .31$
			3.303 .313 .32
\#2	Primary	119.50'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Primary OutFlow Max=0.04 cfs @ 12.22 hrs HW=122.50' (Free Discharge)
-1=Broad-Crested Rectangular Weir (Weir Controls 0.04 cfs @ 0.13 fps)
-2=Exfiltration (Exfiltration Controls 0.00 cfs)

Summary for Link POA1: POA \#1

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1P: 1P

Subcatchment2P: P2

Subcatchment3P: 3P

Subcatchment4P: 4P

Subcatchment5P: 5P

Subcatchment6P: 6P

Reach 2R: R1

Pond P1: P1

Pond P2: Rain Garden

Pond P3: Drip Edge

Pond P4: Drip Edge

Link POA1: POA \#1

Link POA2: POA \#2

Runoff Area $=129,181$ sf 0.00% Impervious Runoff Depth >3.18 " Flow Length $=400^{\prime}$ Tc=9.5 $\mathrm{min} \mathrm{CN}=78$ Runoff $=10.34 \mathrm{cfs} 0.785$ af

Runoff Area=7,295 sf 34.13% Impervious Runoff Depth >3.96 " Flow Length=352' Tc=22.1 min CN=86 Runoff=0.53 cfs 0.055 af

Runoff Area=42,669 sf 77.97% Impervious Runoff Depth >4.80 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=94$ Runoff $=5.27 \mathrm{cfs} 0.392$ af

Runoff Area $=6,503$ sf 100.00% Impervious Runoff Depth $>5.15{ }^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.83 \mathrm{cfs} 0.064$ af

Runoff Area $=1,762$ sf 100.00% Impervious Runoff Depth $>5.15^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.22$ cfs 0.017 af

Runoff Area=7,490 sf 7.42\% Impervious Runoff Depth>3.47" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=81$ Runoff $=0.73 \mathrm{cfs} 0.050$ af

Avg. Flow Depth=0.40' Max Vel=0.72 fps Inflow=5.11 cfs 0.326 af $\mathrm{n}=0.400 \mathrm{~L}=100.0$ ' $\mathrm{S}=0.2200 \mathrm{l} /$ ' Capacity=35.42 cfs Outflow=4.61 cfs 0.324 af

Peak Elev=118.94' Storage=4,731 cf Inflow=5.27 cfs 0.392 af Primary $=0.90$ cfs 0.220 af Secondary=4.21 cfs 0.106 af Outflow=5.11 cfs 0.326 af

Peak Elev=118.65' Storage=688 cf Inflow=0.53 cfs 0.055 af Discarded $=0.09$ cfs 0.042 af Primary $=0.49$ cfs 0.010 af Outflow $=0.58$ cfs 0.052 af

Peak Elev=122.51' Storage=962 cf Inflow=0.83 cfs 0.064 af Outflow=0.25 cfs 0.037 af

Peak Elev=122.51' Storage=241 cf Inflow=0.22 cfs 0.017 af Outflow=0.26 cfs 0.012 af

Inflow=14.21 cfs 1.109 af Primary=14.21 cfs 1.109 af

Inflow=1.12 cfs 0.109 af Primary=1.12 cfs 0.109 af

Summary for Subcatchment 1P: 1P

Runoff $=\quad 10.34$ cfs @ 12.14 hrs, Volume $=\quad 0.785$ af, Depth> 3.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=5.80"

Area (sf) CN Description					
$\begin{aligned} & 80,321 \\ & 48,860 \end{aligned}$		$\begin{aligned} & \hline 77 \\ & 80 \end{aligned}$	Woods, Good, HSG D $>75 \%$ Grass cover, Good, HSG D		
$\begin{aligned} & \hline 129,181 \\ & 129,181 \end{aligned}$		78	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.9	100	0.0500	0.24		Sheet Flow, A TO B SHEET Grass: Short $n=0.150 \quad P 2=3.10^{\prime \prime}$
2.6	300	0.1500	1.94		Shallow Concentrated Flow, B TO C Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
9.5	400	Total			

Summary for Subcatchment 2P: P2

Runoff $=\quad 0.53$ cfs @ 12.30 hrs, Volume $=0.055$ af, Depth> 3.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=5.80"

Summary for Subcatchment 3P: 3P

Runoff $=\quad 5.27$ cfs @ 12.09 hrs, Volume= 0.392 af, Depth> 4.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=5.80"

	Area (sf)	CN	Description
$*$	25,690	98	PAVE
$*$	6,320	98	HALF BUILDING
$*$	9,401	80	$>75 \%$ Grass cover, Good, HSG D
1,258	98	SIDEWALK	
42,669	94	Weighted Average	
9,401		22.03\% Pervious Area	
	33,268		77.97% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment 4P: 4P

Runoff $=0.83$ cfs @ 12.09 hrs, Volume= 0.064 af, Depth> 5.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25 -year Rainfall=5.80"

	Area (sf)	CN	Description
6	6,503	98	HALF BUILDING
6,503		100.00% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 5P: 5P
Runoff $=0.22$ cfs @ 12.09 hrs, Volume= $\quad 0.017$ af, Depth> 5.15"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25 -year Rainfall=5.80"

	ea (sf)	CN Description			
*	1,762	98	HALF BUIL	DING	
1,762		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 6P: 6P
Runoff $=\quad 0.73$ cfs @ 12.09 hrs, Volume= 0.050 af, Depth> 3.47"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25 -year Rainfall=5.80"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| * | 556 | 98 |
| ---: | ---: | :--- |
| PAVE | | |
| 6,934 | 80 | $>75 \%$ Grass cover, Good, HSG D |
| 7,490 | 81 | Weighted Average |
| 6,934 | | 92.58\% Pervious Area |
| 556 | | 7.42% Impervious Area |

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Sirect Entry, |
| :--- |
| 6.0 |
| |
| |

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Max. Velocity $=0.72 \mathrm{fps}$, Min. Travel Time $=2.3 \mathrm{~min}$
Avg. Velocity $=0.26 \mathrm{fps}$, Avg. Travel Time $=6.4 \mathrm{~min}$
Peak Storage= 665 cf @ 12.16 hrs
Average Depth at Peak Storage= 0.40^{\prime}
Bank-Full Depth= 1.00 ' Flow Area= 26.7 sf, Capacity= 35.42 cfs
40.00 ' x 1.00 ' deep Parabolic Channel, $n=0.400$

Length= 100.0' Slope= 0.2200 '/'
Inlet Invert= 102.00', Outlet Invert= 80.00'

Summary for Pond P1: P1

Inflow Area =	0.980 ac, 77.97% Impervious, Inflow Depth > 4.80" for 25-year event			
Inflow	5.27 cfs @	12.09 hrs , Volume=	0.392 af	
Outflow	5.11 cfs @	12.12 hrs , Volume=	0.326 af, A	Atten= 3\%, Lag= 1.9 min
Primary	0.90 cfs @	12.12 hrs , Volume=	0.220 af	
Secondary =	4.21 cfs @	12.12 hrs , Volume=	0.106 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 118.94' @ 12.12 hrs Surf.Area= 3,331 sf Storage= 4,731 cf
Plug-Flow detention time= 96.4 min calculated for 0.325 af (83% of inflow)
Center-of-Mass det. time= 48.7 min (794.3-745.6)
Prepared by HP Printed 10/25/2022

HydroCAD® 10.00-26 s/n 00620 © 2020 HydroCAD Software Solutions LLC

Primary OutFlow Max=0.87 cfs @ 12.12 hrs HW=118.93' (Free Discharge)
-1=Culvert (Passes 0.87 cfs of 4.19 cfs potential flow)
-2=Exfiltration (Exfiltration Controls 0.18 cfs)
$\complement_{3}=$ Orifice/Grate (Orifice Controls 0.68 cfs @ 1.97 fps)
Secondary OutFlow Max=3.96 cfs @ 12.12 hrs HW=118.93' (Free Discharge)
$\Psi_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~} 3.96$ cfs @ 1.07 fps)

Summary for Pond P2: Rain Garden

Inflow Area =	0.167 ac	34.13\% Impervious,	pth > 3.96	for 25-year event
Inflow	0.53 cfs @	12.30 hrs , Volume=	0.055 af	
Outflow	0.58 cfs @	12.41 hrs , Volume=	0.052 af, A	Atten= 0\%, Lag= 6.9 min
Discarded	0.09 cfs @	12.42 hrs , Volume=	0.042 af	
Primary	0.49 cfs @	12.41 hrs, Volume=	0.010 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 118.65' @ 12.42 hrs Surf.Area= 1,590 sf Storage= 688 cf
Plug-Flow detention time $=76.0 \mathrm{~min}$ calculated for 0.052 af (93% of inflow)
Center-of-Mass det. time= $53.0 \mathrm{~min}(833.6-780.7)$

Discarded OutFlow Max=0.09 cfs @ $12.42 \mathrm{hrs} \mathrm{HW}=118.64$ ' (Free Discharge)
$L_{3=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.09 \mathrm{cfs})}$
Primary OutFlow Max=0.41 cfs @ 12.41 hrs HW=118.64' (Free Discharge)

- $1=$ Culvert (Passes 0.00 cfs of 0.58 cfs potential flow)
—2=CPV Drawdown Model (Orifice Controls 0.00 cfs @ 7.82 fps)
4=Broad-Crested Rectangular Weir (Weir Controls 0.41 cfs @ 0.56 fps$)$

Summary for Pond P3: Drip Edge

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2
Peak Elev= 122.51' @ 12.34 hrs Surf.Area= 800 sf Storage= 962 cf
Plug-Flow detention time $=125.6 \mathrm{~min}$ calculated for 0.037 af (58% of inflow)
Center-of-Mass det. time $=43.5 \mathrm{~min}(777.8-734.3)$

Summary for Pond P4: Drip Edge

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 122.51 ' @ 12.10 hrs Surf.Area= 200 sf Storage= 241 cf
Plug-Flow detention time $=100.9 \mathrm{~min}$ calculated for 0.012 af (71% of inflow)
Center-of-Mass det. time $=34.3 \mathrm{~min}$ (768.6-734.3)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	119.50^{\prime}	280 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		700 cf Overall $\times 40.0 \%$ Voids	

Prepared by HP Printed 10/25/2022

HydroCAD® 10.00-26 s/n 00620 © 2020 HydroCAD Software Solutions LLC

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
119.50	200	0	0
123.00	200	700	700

Device	Routing	Invert	Outlet Devices
\#1	Primary	122.50'	125.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80
			2.503 .00
			Coef. (English) 2.692 .722 .752 .852 .983 .0833 .203 .283 .31
			3.303 .313 .32
\#2	Primary	119.50'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Primary OutFlow Max=0.18 cfs @ 12.12 hrs HW=122.51' (Free Discharge)
-1=Broad-Crested Rectangular Weir (Weir Controls 0.18 cfs @ 0.22 fps)
-2=Exfiltration (Exfiltration Controls 0.00 cfs)

Summary for Link POA1: POA \#1

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1P: 1P	Runoff Area $=129,181$ sf 0.00% Impervious Runoff Depth >1.31 " Flow Length=400' $\mathrm{Tc}=9.5 \mathrm{~min} \quad \mathrm{CN}=78$ Runoff=4.26 cfs 0.323 af
Subcatchment2P: P2	Runoff Area=7,295 sf 34.13% Impervious Runoff Depth $>1.87^{\prime \prime}$ Flow Length=352' \quad cc=22.1 $\mathrm{min} \quad \mathrm{CN}=86$ Runoff $=0.25 \mathrm{cfs} 0.026$ af
Subcatchment 3P: 3P	Runoff Area=42,669 sf 77.97% Impervious Runoff Depth>2.59" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=94$ Runoff=$=2.93 \mathrm{cfs} 0.211 \mathrm{af}$
Subcatchment 4P: 4P	Runoff Area $=6,503$ sf 100.00% Impervious Runoff Depth >2.96 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.48 \mathrm{cfs} 0.037 \mathrm{af}$
Subcatchment5P: 5P	Runoff Area $=1,762$ sf 100.00% Impervious Runoff Depth >2.96 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.13 \mathrm{cfs} 0.010$ af
Subcatchment6P: 6P	Runoff Area $=7,490$ sf $\quad 7.42 \%$ Impervious Runoff Depth >1.51 " Tc $=6.0 \mathrm{~min} \mathrm{CN}=81$ Runoff $=0.32 \mathrm{cfs} 0.022$ af
Reach 2R: R1	Avg. Flow Depth=0.14' Max Vel=0.36 fps Inflow=0.57 cfs 0.164 af $\mathrm{n}=0.400 \mathrm{~L}=100.0$ ' $\mathrm{S}=0.2200$ '/' Capacity $=35.42 \mathrm{cfs}$ Outflow=0.52 cfs 0.161 af
Pond P1: P1	Peak Elev=118.77' Storage=4,180 cf Inflow=2.93 cfs 0.211 af Primary $=0.37$ cfs 0.160 af Secondary $=0.20$ cfs 0.004 af Outflow= 0.57 cfs 0.164 af
Pond P2: Rain Garden	Peak Elev=118.05' Storage=416 cf Inflow=0.25 cfs 0.026 af Discarded $=0.08$ cfs 0.025 af Primary $=0.00$ cfs 0.000 af Outflow= 0.08 cfs 0.025 af
Pond P3: Drip Edge	Peak Elev=122.28' Storage $=890$ cf $\begin{aligned} & \text { Inflow }=0.48 \mathrm{cfs} 0.037 \text { af } \\ & \text { Oufflow }=0.02 \mathrm{cfs} 0.020 \text { af }\end{aligned}$
Pond P4: Drip Edge	Peak Elev=122.50' Storage=240 cf Inflow=0.13 cfs 0.010 af Outflow=0.01 cfs 0.005 af
Link POA1: POA \#1	Inflow=4.39 cfs 0.485 af Primary $=4.39$ cfs 0.485 af
Link POA2: POA \#2	Inflow=0.34 cfs 0.047 af Primary $=0.34$ cfs 0.047 af

Total Runoff Area $=4.474$ ac Runoff Volume $=0.629$ af Average Runoff Depth $=1.69$ "
77.13% Pervious $=3.451$ ac 22.87% Impervious $=1.023$ ac

Summary for Subcatchment 1P: 1P

Runoff $=\quad 4.26$ cfs @ 12.14 hrs, Volume $=\quad 0.323$ af, Depth> $1.31^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr Custom Rainfall=3.40"

Summary for Subcatchment 2P: P2

Runoff $=\quad 0.25$ cfs @ 12.31 hrs, Volume= 0.026 af, Depth> 1.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr Custom Rainfall=3.40"

Summary for Subcatchment 3P: 3P

```
Runoff \(=\quad 2.93\) cfs @ 12.09 hrs, Volume= 0.211 af, Depth> 2.59"
```

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr Custom Rainfall=3.40"

	Area (sf)	CN	Description
$*$	25,690	98	PAVE
$*$	6,320	98	HALF BUILDING
$*$	9,401	80	$>75 \%$ Grass cover, Good, HSG D
1,258	98	SIDEWALK	
42,669	94	Weighted Average	
9,401		22.03\% Pervious Area	
	33,268		77.97% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment 4P: 4P

Runoff $=0.48$ cfs @ 12.09 hrs, Volume= 0.037 af, Depth> 2.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr Custom Rainfall=3.40"

Area (sf)		CN Description				
*	6,503	98 H	ALF BUIL	DING		
6,503		100.00\% Impervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct En	
		Summary for Subcatchment 5P: 5P				
Runoff	=	0.13 cf	@ 12.0	hrs, Volu	me=	0.010 af, Depth> 2.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr Custom Rainfall=3.40"

	Area (sf)	CN	Description		
*	1,762	98	HALF BUILDING		
	1,762	100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.0					Direct Entry

Summary for Subcatchment 6P: 6P
Runoff $=\quad 0.32$ cfs @ 12.09 hrs, Volume= 0.022 af, Depth> 1.51"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr Custom Rainfall= $=3.40$ "

	Area (sf)	CN
*	Description	
556	98	PAVE
6,934	80	$>75 \%$ Grass cover, Good, HSG D
7,490	81	Weighted Average
6,934		92.58\% Pervious Area
556		7.42% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |
| 6.0 |
| |
| |

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Max. Velocity $=0.36 \mathrm{fps}$, Min. Travel Time $=4.6 \mathrm{~min}$
Avg. Velocity $=0.22 \mathrm{fps}$, Avg. Travel Time $=7.5 \mathrm{~min}$
Peak Storage= 145 cf @ 12.60 hrs
Average Depth at Peak Storage= 0.14 '
Bank-Full Depth= 1.00 ' Flow Area= 26.7 sf, Capacity= 35.42 cfs
40.00 ' x 1.00 ' deep Parabolic Channel, $n=0.400$

Length= 100.0' Slope= 0.2200 '/'
Inlet Invert= 102.00', Outlet Invert= 80.00'

Summary for Pond P1: P1

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 118.77' @ 12.53 hrs Surf.Area= 3,191 sf Storage= 4,180 cf
Plug-Flow detention time= 156.4 min calculated for 0.163 af (77% of inflow)
Center-of-Mass det. time= $99.7 \min (856.2-756.5)$

Summary for Pond P3: Drip Edge

Inflow Area =	$0.149 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth > 2.96" for Custom event			
Inflow	0.48 cfs @	12.09 hrs , Volume=	0.037 af	
Outflow	0.02 cfs @	9.50 hrs , Volume=	0.020 af,	tten= 96\%, Lag= 0.0 mi
Primary	0.02 cfs @	9.50 hrs , Volume=	0.020 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2
Peak Elev= 122.28' @ 15.19 hrs Surf.Area= 800 sf Storage= 890 cf
Plug-Flow detention time $=162.8 \mathrm{~min}$ calculated for 0.020 af (53% of inflow)
Center-of-Mass det. time $=73.3 \mathrm{~min}(811.3-738.0)$

Summary for Pond P4: Drip Edge

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs $/ 2$
Peak Elev= 122.50' @ 13.70 hrs Surf.Area= 200 sf Storage= 240 cf
Plug-Flow detention time $=161.4$ min calculated for 0.005 af (53% of inflow)
Center-of-Mass det. time= $70.8 \mathrm{~min}(808.8-738.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	119.50	280 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		700 cf Overall $\times 40.0 \%$ Voids	

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
119.50	200	0	0
123.00	200	700	700

Device	Routing	Invert	Outlet Devices
\#1	Primary	122.50'	125.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80
			2.503 .00
			Coef. (English) $2.692 .722 .75 \quad 2.85 \quad 2.9830 .0833 .203 .283 .31$
			3.303 .313 .32
\#2	Primary	119.50'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Primary OutFlow Max=0.01 cfs @ 13.72 hrs HW=122.50' (Free Discharge)
-1=Broad-Crested Rectangular Weir (Weir Controls 0.00 cfs @ 0.03 fps)
-2=Exfiltration (Exfiltration Controls 0.00 cfs)

Summary for Link POA1: POA \#1

Inflow Area $=$	$3.945 \mathrm{ac}, 19.36 \%$ Impervious, Inflow Depth $>1.47 "$ for Custom event	
Inflow	$=$	$4.39 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=$
Primary	$=$	$4.39 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=$

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1P: 1P	Runoff Area $=129,181$ sf 0.00% Impervious Runoff Depth >0.05 " Flow Length $=400$ Tc=9.5 $\mathrm{min} \quad \mathrm{CN}=78$ Runoff $=0.05 \mathrm{cfs} 0.012$ af
Subcatchment2P: P2	Runoff Area=7,295 sf 34.13% Impervious Runoff Depth $>0.17^{\prime \prime}$ Flow Length=352' $\quad \mathrm{Cc}=22.1 \mathrm{~min} \quad \mathrm{CN}=86$ Runoff $=0.02 \mathrm{cfs} 0.002$ af
Subcatchment3P: 3P	Runoff Area=42,669 sf 77.97% Impervious Runoff Depth >0.47 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=94$ Runoff $=0.57 \mathrm{cfs} 0.038$ af
Subcatchment 4P: 4P	Runoff Area $=6,503$ sf 100.00% Impervious Runoff Depth >0.75 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.13 \mathrm{cfs} 0.009$ af
Subcatchment5P: 5P	Runoff Area $=1,762$ sf 100.00% Impervious Runoff Depth $>0.75{ }^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.04 \mathrm{cfs} 0.003$ af
Subcatchment6P: 6P	Runoff Area $=7,490$ sf $\quad 7.42 \%$ Impervious Runoff Depth >0.08 " Tc $=6.0 \mathrm{~min} \mathrm{CN}=81$ Runoff $=0.01 \mathrm{cfs} 0.001$ af
Reach 2R: R1	Avg. Flow Depth=0.07' Max Vel=0.23 fps Inflow=0.11 cfs 0.038 af $\mathrm{n}=0.400 \mathrm{~L}=100.0$ ' $\mathrm{S}=0.2200$ '/' Capacity $=35.42 \mathrm{cfs}$ Outflow=0.11 cfs 0.038 af
Pond P1: P1	Peak Elev=117.37' Storage=517 cf Inflow=0.57 cfs 0.038 af Primary $=0.11$ cfs 0.038 af Secondary $=0.00$ cfs 0.000 af Outflow $=0.11$ cfs 0.038 af
Pond P2: Rain Garden	Peak Elev=115.53' Storage=5 cf Inflow=0.02 cfs 0.002 af Discarded $=0.02$ cfs 0.002 af Primary $=0.00$ cfs 0.000 af Outflow $=0.02$ cfs 0.002 af
Pond P3: Drip Edge	Peak Elev=119.93' Storage=138 cf Inflow=0.13 cfs 0.009 af Outflow=0.02 cfs 0.009 af
Pond P4: Drip Edge	Peak Elev=119.98' Storage=39 cf Inflow=0.04 cfs 0.003 af Outflow= 0.00 cfs 0.003 af
Link POA1: POA \#1	$\begin{aligned} & \text { Inflow }=0.16 \text { cfs } \quad 0.049 \text { af } \\ & \text { Primary }=0.16 \text { cfs } 0.049 \text { af } \end{aligned}$
Link POA2: POA \#2	$\begin{aligned} & \text { Inflow=}=0.03 \mathrm{cfs} \quad 0.013 \mathrm{af} \\ & \text { Primary }=0.03 \mathrm{cfs} \quad 0.013 \mathrm{af} \end{aligned}$

Total Runoff Area $=4.474$ ac Runoff Volume $=0.065$ af Average Runoff Depth $=0.18$ "
77.13% Pervious = 3.451 ac 22.87% Impervious = 1.023 ac

Summary for Subcatchment 1P: 1P

Runoff $=\quad 0.05$ cfs @ 12.45 hrs, Volume $=\quad 0.012$ af, Depth> 0.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQ Rainfall=1.00"

Area (sf) CN Description					
$\begin{aligned} & 80,321 \\ & 48,860 \end{aligned}$		$\begin{aligned} & 77 \\ & 80 \end{aligned}$	Woods, Good, HSG D $>75 \%$ Grass cover, Good, HSG D		
$\begin{aligned} & 129,181 \\ & 129,181 \end{aligned}$		78	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.9	100	0.0500	0.24		Sheet Flow, A TO B SHEET Grass: Short $n=0.150 \quad P 2=3.10 "$
2.6	300	0.1500	1.94		Shallow Concentrated Flow, B TO C Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
9.5	400	Total			

Summary for Subcatchment 2P: P2

Runoff $=\quad 0.02$ cfs @ 12.38 hrs, Volume $=0.002$ af, Depth> 0.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQ Rainfall=1.00"

Summary for Subcatchment 3P: 3P

```
Runoff \(=0.57\) cfs @ 12.09 hrs, Volume= 0.038 af, Depth> 0.47"
```

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQ Rainfall=1.00"

	Area (sf)	CN	Description
$*$	25,690	98	PAVE
$*$	6,320	98	HALF BUILDING
$*$	9,401	80	$>75 \%$ Grass cover, Good, HSG D
1,258	98	SIDEWALK	
42,669	94	Weighted Average	
9,401		22.03\% Pervious Area	
	33,268		77.97% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 4P: 4P

Runoff $=\quad 0.13$ cfs @ 12.09 hrs, Volume= 0.009 af, Depth> $0.75{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQ Rainfall=1.00"

	Area (sf)	CN	Description
6	6,503	98	HALF BUILDING
6,503		100.00% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 5P: 5P
Runoff $=\quad 0.04$ cfs @ 12.09 hrs, Volume $=0.003$ af, Depth> $0.75^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQ Rainfall=1.00"

	Area (sf)	CN	Description		
*	1,762	98	HALF BUILDING		
	1,762	100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.0					Direct Entry,

Summary for Subcatchment 6P: 6P
Runoff $=\quad 0.01$ cfs @ 12.27 hrs, Volume $=0.001$ af, Depth> 0.08"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQ Rainfall=1.00"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| * | 556 | 98 |
| ---: | ---: | :--- |
| PAVE | | |
| 6,934 | 80 | $>75 \%$ Grass cover, Good, HSG D |
| 7,490 | 81 | Weighted Average |
| 6,934 | | 92.58\% Pervious Area |
| 556 | | 7.42% Impervious Area |

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Sirect Entry, |
| :--- |
| 6.0 |
| |
| |

Inflow Area $=$	0.980 ac, 77.97% Impervious, Inflow Depth $>0.47 "$	for WQ event
Inflow	$=$	$0.11 \mathrm{cfs} @ 12.55 \mathrm{hrs}$, Volume=
Outflow	$=$	$0.11 \mathrm{cfs} @ 12.78 \mathrm{hrs}$, Volume=

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Max. Velocity $=0.23 \mathrm{fps}$, Min. Travel Time $=7.4 \mathrm{~min}$
Avg. Velocity $=0.15 \mathrm{fps}$, Avg. Travel Time $=11.3 \mathrm{~min}$
Peak Storage= 50 cf @ 12.66 hrs
Average Depth at Peak Storage= 0.07'
Bank-Full Depth= 1.00 Flow Area= 26.7 sf, Capacity $=35.42$ cfs
40.00 ' x 1.00 ' deep Parabolic Channel, $n=0.400$

Length= 100.0' Slope= 0.2200 '/'
Inlet Invert= 102.00', Outlet Invert= 80.00'

Summary for Pond P1: P1

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 117.37' @ 12.55 hrs Surf.Area= 2,028 sf Storage= 517 cf
Plug-Flow detention time $=36.4$ min calculated for 0.038 af (100\% of inflow)
Center-of-Mass det. time= 34.7 min (830.6-795.9)

Summary for Pond P2: Rain Garden

Inflow Area	0.167 ac, 34.13\% Impervious, Inflow Depth > 0.17" for WQ event			
Inflow	0.02 cfs @	12.38 hrs, Volume=	0.002 af	
Outflow	0.02 cfs @	12.46 hrs , Volume=	0.002 af ,	Atten $=4 \%, L a g=5.0 \mathrm{~min}$
Discarded	0.02 cfs @	12.46 hrs , Volume=	0.002 af	
Primary	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 115.53' @ 12.46 hrs Surf.Area= 346 sf Storage= 5 cf
Plug-Flow detention time= 4.2 min calculated for 0.002 af (99% of inflow)
Center-of-Mass det. time $=3.3 \mathrm{~min}(855.3-852.1)$

Summary for Pond P3: Drip Edge

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2
Peak Elev= 119.93' @ 12.61 hrs Surf.Area= 800 sf Storage= 138 cf
Plug-Flow detention time $=55.1 \mathrm{~min}$ calculated for 0.009 af (100% of inflow)
Center-of-Mass det. time $=53.8 \mathrm{~min}$ (812.3-758.5)

Summary for Pond P4: Drip Edge

Inflow Area $=$	$0.040 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $>0.75 "$ for WQ event	
Inflow	$=$	$0.04 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=$
Outflow	$=$	$0.00 \mathrm{cfs} @ 11.75 \mathrm{hrs}$, Volume=
Primary	$=$	$0.00 \mathrm{cfs} @$
		11.75 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev=119.98' @ 12.64 hrs Surf.Area= 200 sf Storage= 39 cf
Plug-Flow detention time= 63.2 min calculated for 0.003 af (99% of inflow)
Center-of-Mass det. time= 61.7 min (820.3-758.5)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	119.50^{\prime}	280 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		700 cf Overall $\times 40.0 \%$ Voids	

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
119.50	200	0	0
123.00	200	700	700

Device	Routing	Invert	Outlet Devices
\#1	Primary	122.50'	125.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80
			2.503 .00
			Coef. (English) $2.692 .722 .75 \quad 2.85 \quad 2.983 .083 .203 .283 .31$
			3.303 .313 .32
\#2	Primary	119.50'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Primary OutFlow Max=$=0.00 \mathrm{cfs} @ 11.75 \mathrm{hrs}$ HW=119.54' (Free Discharge)
$-1=$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)
$2=$ Exfiltration (Exfiltration Controls 0.00 cfs)

Summary for Link POA1: POA \#1

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1P: 1P	Runoff Area=129,181 sf 0.00% Impervious Runoff Depth >1.94 " Flow Length=400' $\mathrm{Tc}=9.5 \mathrm{~min} \quad \mathrm{CN}=78$ Runoff $=6.35 \mathrm{cfs} 0.480$ af
Subcatchment2P: P2	Runoff Area=7,295 sf 34.13\% Impervious Runoff Depth>2.60"
	Flow Length=352' $\mathrm{Tc}=22.1 \mathrm{~min}$ CN=86 Runoff $=0.35 \mathrm{cfs} 0.036$ af
Subcatchment 3P: 3P	Runoff Area $=42,669$ sf 77.97% Impervious Runoff Depth >3.38 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=94$ Runoff $=3.77 \mathrm{cfs} 0.276$ af
Subcatchment 4P: 4P	Runoff Area $=6,503$ sf 100.00% Impervious Runoff Depth >3.74 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.61 \mathrm{cfs} 0.047$ af
Subcatchment5P: 5P	Runoff Area $=1,762$ sf 100.00% Impervious Runoff Depth >3.74 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.16 \mathrm{cfs} 0.013$ af
Subcatchment6P: 6P	Runoff Area=7,490 sf 7.42\% Impervious Runoff Depth>2.18" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=81$ Runoff $=0.46 \mathrm{cfs} 0.031$ af
Reach 2R: R1	Avg. Flow Depth=0.25' Max Vel=0.53 fps Inflow=1.99 cfs 0.221 af $\mathrm{n}=0.400 \mathrm{~L}=100.0$ ' $\mathrm{S}=0.2200$ '/' Capacity $=35.42 \mathrm{cfs}$ Outflow=1.81 cfs 0.219 af
Pond P1: P1	Peak Elev=118.84' Storage=4,405 cf Inflow=3.77 cfs 0.276 af Primary $=0.55$ cfs 0.184 af Secondary $=1.44$ cfs 0.036 af Outflow=1.99 cfs 0.221 af
Pond P2: Rain Garden	Peak Elev=118.52' Storage= 620 cf Inflow= 0.35 cfs 0.036 af Discarded $=0.09$ cfs 0.034 af Primary $=0.00$ cfs 0.000 af Outflow= 0.09 cfs 0.034 af
Pond P3: Drip Edge	Peak Elev=122.50' Storage=961 cf Inflow=0.61 cfs 0.047 af Outflow=0.12 cfs 0.026 af
Pond P4: Drip Edge	Peak Elev=122.50' Storage $=240$ cf $\begin{array}{r}\text { Inflow }=0.16 \text { cfs } 0.013 \text { af } \\ \text { Outflow }=0.11 \text { cfs } 0.008 \text { af }\end{array}$
Link POA1: POA \#1	Inflow=6.50 cfs 0.699 af Primary $=6.50$ cfs 0.699 af
Link POA2: POA \#2	Inflow=0.49 cfs 0.066 af Primary $=0.49$ cfs 0.066 af

Total Runoff Area $=4.474$ ac Runoff Volume $=0.883$ af Average Runoff Depth $=2.37$ " 77.13% Pervious $=3.451$ ac 22.87% Impervious $=1.023$ ac

Summary for Subcatchment 1P: 1P

Runoff $=\quad 6.35$ cfs @ 12.14 hrs, Volume $=\quad 0.480$ af, Depth> 1.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF Rainfall=4.26"

	ea (sf)	CN	escription		
$\begin{array}{r} 80,321 \\ 48,860 \\ \hline \end{array}$			Woods, Good, HSG D $>75 \%$ Grass cover, Good, HSG D		
$\begin{aligned} & 129,181 \\ & 129,181 \end{aligned}$		78	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.9	100	0.0500	0.24		Sheet Flow, A TO B SHEET Grass: Short $n=0.150 \quad P 2=3.10 "$
2.6	300	0.1500	1.94		Shallow Concentrated Flow, B TO C Woodland Kv= 5.0 fps
9.5	400	Total			

Summary for Subcatchment 2P: P2

Runoff $=\quad 0.35$ cfs @ 12.30 hrs, Volume $=0.036$ af, Depth> 2.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF Rainfall=4.26"

	Area (sf)	CN	Description		
A	$\begin{array}{r} 2,490 \\ 4,805 \\ \hline \end{array}$	$\begin{array}{ll} 98 \\ 80 \\ 8 \end{array}$	DRIVE/WALK$>75 \%$ Grass cover, Good, HSG D		
	$\begin{aligned} & 7,295 \\ & 4,805 \\ & 2,490 \end{aligned}$	86	Weighted Average 65.87\% Pervious Area 34.13\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
19.1	100	0.0100	0.09		Sheet Flow, A TO B SHEET Grass: Dense n=0.240 P2=3.10"
3.0	- 252	0.0400	1.40		Shallow Concentrated Flow, B TO C Short Grass Pasture Kv=7.0 fps
22.1	352	Total			

Summary for Subcatchment 3P: 3P

```
Runoff \(=3.77\) cfs @ 12.09 hrs, Volume= 0.276 af, Depth> 3.38"
```

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF Rainfall=4.26"

	Area (sf)	CN	Description
$*$	25,690	98	PAVE
$*$	6,320	98	HALF BUILDING
$*$	9,401	80	$>75 \%$ Grass cover, Good, HSG D
1,258	98	SIDEWALK	
42,669	94	Weighted Average	
9,401		22.03\% Pervious Area	
	33,268		77.97% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment 4P: 4P

Runoff $=0.61$ cfs @ 12.09 hrs, Volume= 0.047 af, Depth> 3.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF Rainfall=4.26"

	Area (sf)	CN	Description
6	6,503	98	HALF BUILDING
6,503		100.00% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 5P: 5P
Runoff $=\quad 0.16$ cfs @ 12.09 hrs, Volume $=0.013$ af, Depth> 3.74"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF Rainfall=4.26"

	rea (sf)	CN Description			
*	1,762	98	ALF BUIL	DING	
1,762		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 6P: 6P
Runoff $=0.46$ cfs @ 12.09 hrs, Volume= $\quad 0.031$ af, Depth> 2.18"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF Rainfall=4.26"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| * | 556 | 98 |
| ---: | ---: | :--- |
| PAVE | | |
| 6,934 | 80 | $>75 \%$ Grass cover, Good, HSG D |
| 7,490 | 81 | Weighted Average |
| 6,934 | | 92.58\% Pervious Area |
| 556 | | 7.42% Impervious Area |

| Tc
 (min) | Length
 (feet) | Slope
 (ft/ft) | Velocity
 (ft/sec) | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Reach 2R: R1

Inflow Area $=0.980$ ac, 77.97% Impervious, Inflow Depth > 2.70" for WQV USSF event
Inflow $=1.99$ cfs @ 12.24 hrs , Volume $=0.221$ af
Outflow $=1.81 \mathrm{cfs} @ 12.35 \mathrm{hrs}$, Volume $=0.219 \mathrm{af}$, Atten $=9 \%$, Lag= 7.0 min
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Max. Velocity $=0.53 \mathrm{fps}$, Min. Travel Time $=3.1 \mathrm{~min}$
Avg. Velocity $=0.24 \mathrm{fps}$, Avg. Travel Time $=7.0 \mathrm{~min}$
Peak Storage= 341 cf @ 12.30 hrs
Average Depth at Peak Storage= 0.25^{\prime}
Bank-Full Depth= 1.00 ' Flow Area= 26.7 sf, Capacity= 35.42 cfs
40.00 ' x 1.00 ' deep Parabolic Channel, $n=0.400$

Length= 100.0' Slope= 0.2200 '/'
Inlet Invert= 102.00', Outlet Invert= 80.00'

Summary for Pond P1: P1

Inflow Area	0.980 ac, 77.97% Impervious, Inflow Depth > 3.38" for WQV USSF event			
Inflow	3.77 cfs @	12.09 hrs , Volume=	0.276 af	
Outflow	1.99 cfs @	12.24 hrs , Volume=	0.221 af,	, Atten= 47\%, Lag= 8.9 min
Primary	0.55 cfs @	12.24 hrs , Volume=	0.184 af	
Secondary =	1.44 cfs @	12.24 hrs , Volume=	0.036 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 118.84' @ 12.24 hrs Surf.Area= 3,249 sf Storage= 4,405 cf
Plug-Flow detention time $=125.6$ min calculated for 0.220 af (80% of inflow)
Center-of-Mass det. time= $72.5 \mathrm{~min}(823.9-751.4)$

Primary OutFlow Max=0.54 cfs @ 12.24 hrs HW=118.84' (Free Discharge)
1=Culvert (Passes 0.54 cfs of 4.15 cfs potential flow)
-2=Exfiltration (Exfiltration Controls 0.18 cfs)
$\square_{3=O r i f i c e / G r a t e ~(O r i f i c e ~ C o n t r o l s ~} 0.36$ cfs @ 1.68 fps)
Secondary OutFlow Max=1.40 cfs @ 12.24 hrs HW=118.84' (Free Discharge)
$\Psi_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~} 1.40$ cfs @ 0.76 fps)

Summary for Pond P2: Rain Garden

Inflow Area =	0.167 ac, 34.13\% Impervious, Inflow Depth > 2.60" for WQV USSF event			
Inflow	0.35 cfs @	12.30 hrs , Volume=	0.036 af	
Outflow	0.09 cfs @	12.92 hrs , Volume=	0.034 af,	Atten $=75 \%, L a g=37.4 \mathrm{~min}$
Discarded	0.09 cfs @	12.92 hrs , Volume=	0.034 af	
Primary	0.00 cfs @	12.92 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 118.52' @ 12.92 hrs Surf.Area= 1,545 sf Storage= 620 cf
Plug-Flow detention time $=91.2 \mathrm{~min}$ calculated for 0.034 af (93% of inflow)
Center-of-Mass det. time= 69.3 $\min (859.9-790.6$)

Summary for Pond P3: Drip Edge

Inflow Area $=$	$0.149 \mathrm{ac}, 100.00 \%$	Impervious, Inflow Depth $>$	$3.74 "$ for WQV USSF event
Inflow	$=$	$0.61 \mathrm{cfs} @$	12.09 hrs, Volume $=$
Outflow	$=$	$0.12 \mathrm{cfs} @$	12.47 hrs, Volume $=$
Primary	$=$	$0.12 \mathrm{cfs} @$	12.47 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2
Peak Elev= 122.50' @ 12.45 hrs Surf.Area= 800 sf Storage= 961 cf
Plug-Flow detention time $=143.3$ min calculated for 0.026 af (57% of inflow)
Center-of-Mass det. time $=58.2 \mathrm{~min}(794.4-736.2)$

Summary for Pond P4: Drip Edge

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 122.50' @ 12.30 hrs Surf.Area= 200 sf Storage= 240 cf
Plug-Flow detention time= 121.1 min calculated for 0.008 af (66% of inflow)
Center-of-Mass det. time= 47.9 $\min (784.1-736.2$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	119.50^{\prime}	280 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		700 cf Overall $\times 40.0 \%$ Voids	

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
119.50	200	0	0
123.00	200	700	700

Device	Routing	Invert	Outlet Devices
\#1	Primary	122.50'	125.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80
			2.503 .00
			Coef. (English) $2.692 .722 .75 \quad 2.85 \quad 2.983 .083 .203 .283 .31$
			3.303 .313 .32
\#2	Primary	119.50'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Primary OutFlow Max=0.05 cfs @ 12.32 hrs HW=122.50' (Free Discharge)
-1=Broad-Crested Rectangular Weir (Weir Controls 0.05 cfs @ 0.14 fps)
-2=Exfiltration (Exfiltration Controls 0.00 cfs)

Summary for Link POA1: POA \#1

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Inflow Area $=$	$0.529 \mathrm{ac}, 49.07 \%$ Impervious, Inflow Depth $>1.50 "$ for WQV USSF event	
Inflow	$=$	$0.49 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=$
Primary	$=$	$0.49 \mathrm{cfs} @$
	12.09 hrs , Volume $=$	0.066 af

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1P: 1P	Runoff Area $=129,181$ sf 0.00% Impervious Runoff Depth >1.94 "
	Flow Length=400' $\mathrm{Tc}=9.5 \mathrm{~min}$ CN=78 Runoff=6.35 cfs 0.480 af
Subcatchment2P: P2	Runoff Area=7,295 sf 34.13% Impervious Runoff Depth $>2.60^{\prime \prime}$ Flow Length=352' $\mathrm{Tc}=22.1 \mathrm{~min} \quad \mathrm{CN}=86$ Runoff= 0.35 cfs 0.036 af
Subcatchment3P: 3P	Runoff Area=42,669 sf 77.97% Impervious Runoff Depth $>3.38^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=94$ Runoff $=3.77 \mathrm{cfs} 0.276$ af
Subcatchment4P: 4P	Runoff Area $=6,503$ sf 100.00% Impervious Runoff Depth $>3.74^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff= 0.61 cfs 0.047 af
Subcatchment5P: 5P	Runoff Area $=1,762$ sf 100.00% Impervious Runoff Depth $>3.74^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff= 0.16 cfs 0.013 af
Subcatchment6P: 6P	Runoff Area $=7,490$ sf 7.42% Impervious Runoff Depth >2.18 " Tc $=6.0 \mathrm{~min} \quad \mathrm{CN}=81$ Runoff $=0.46 \mathrm{cfs} 0.031$ af
Reach 2R: R1	Avg. Flow Depth=0.25' Max Vel=0.53 fps Inflow=1.99 cfs 0.221 af $\mathrm{n}=0.400 \mathrm{~L}=100.0$ S $=0.2200 \mathrm{l} / \mathrm{l} \quad$ Capacity=35.42 cfs Outflow=1.81 cfs 0.219 af
Pond P1: P1	Peak Elev=118.84' Storage=4,405 cf Inflow=3.77 cfs 0.276 af Primary $=0.55$ cfs 0.184 af Secondary $=1.44$ cfs 0.036 af Outflow=1.99 cfs 0.221 af
Pond P2: Rain Garden	Peak Elev=118.52' Storage=620 cf Inflow=0.35 cfs 0.036 af Discarded $=0.09$ cfs 0.034 af Primary $=0.00$ cfs 0.000 af Outflow $=0.09$ cfs 0.034 af
Pond P3: Drip Edge	Peak Elev=122.50' Storage=961 cf Inflow=0.61 cfs 0.047 af Outflow= 0.12 cfs 0.026 af
Pond P4: Drip Edge	Peak Elev=122.50' Storage $=240$ cf $\begin{aligned} & \text { Inflow }=0.16 \text { cfs } 0.013 \text { af } \\ & \text { Outflow }=0.11 \mathrm{cfs} 0.008 \text { af }\end{aligned}$
Link POA1: POA \#1	Inflow=6.50 cfs 0.699 af Primary $=6.50$ cfs 0.699 af
Link POA2: POA \#2	$\begin{aligned} & \text { Inflow=}=0.49 \mathrm{cfs} \quad 0.066 \text { af } \\ & \text { Primary }=0.49 \mathrm{cfs} \quad 0.066 \text { af } \end{aligned}$

Summary for Subcatchment 1P: 1P

Runoff $=\quad 6.35$ cfs @ 12.14 hrs, Volume $=\quad 0.480$ af, Depth> 1.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 1 Rainfall=4.26"

Area (sf) CN Description					
$\begin{aligned} & 80,321 \\ & 48,860 \end{aligned}$		$\begin{array}{ll} \hline 77 & 4 \\ 80 & 7 \end{array}$	Woods, Good, HSG D $>75 \%$ Grass cover, Good, HSG D		
$\begin{aligned} & \hline 129,181 \\ & 129,181 \end{aligned}$		78	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.9	100	0.0500	0.24		Sheet Flow, A TO B SHEET Grass: Short $n=0.150 \quad P 2=3.10^{\prime \prime}$
2.6	300	0.1500	1.94		Shallow Concentrated Flow, B TO C Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
9.5	400	Total			

Summary for Subcatchment 2P: P2

Runoff $=\quad 0.35$ cfs @ 12.30 hrs, Volume= 0.036 af, Depth> 2.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 1 Rainfall=4.26"

	Area (sf)	CN	Description		
A	$\begin{array}{r} 2,490 \\ 4,805 \\ \hline \end{array}$	$\begin{array}{ll} 98 \\ 80 \\ 8 \end{array}$	DRIVE/WALK$>75 \%$ Grass cover, Good, HSG D		
	$\begin{aligned} & 7,295 \\ & 4,805 \\ & 2,490 \end{aligned}$	86	Weighted Average 65.87\% Pervious Area 34.13\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
19.1	100	0.0100	0.09		Sheet Flow, A TO B SHEET Grass: Dense n=0.240 P2=3.10"
3.0	- 252	0.0400	1.40		Shallow Concentrated Flow, B TO C Short Grass Pasture Kv=7.0 fps
22.1	352	Total			

Summary for Subcatchment 3P: 3P

$$
\text { Runoff }=3.77 \text { cfs @ } 12.09 \text { hrs, Volume= } 0.276 \text { af, Depth> 3.38" }
$$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 1 Rainfall=4.26"

	Area (sf)	CN	Description
$*$	25,690	98	PAVE
$*$	6,320	98	HALF BUILDING
$*$	9,401	80	$>75 \%$ Grass cover, Good, HSG D
1,258	98	SIDEWALK	
42,669	94	Weighted Average	
9,401		22.03\% Pervious Area	
	33,268		77.97% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment 4P: 4P

Runoff $=0.61$ cfs @ 12.09 hrs, Volume= 0.047 af, Depth> 3.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 1 Rainfall=4.26"

	Area (sf)	CN	Description
6	6,503	98	HALF BUILDING
6,503		100.00% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 5P: 5P
Runoff $=\quad 0.16$ cfs @ 12.09 hrs, Volume $=0.013$ af, Depth> 3.74"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 1 Rainfall=4.26"

	rea (sf)	CN Description			
*	1,762	98	ALF BUIL	DING	
1,762		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 6P: 6P
Runoff $=0.46$ cfs @ 12.09 hrs, Volume= $\quad 0.031$ af, Depth> 2.18"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 1 Rainfall=4.26"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| * | 556 | 98 |
| ---: | ---: | :--- |
| PAVE | | |
| 6,934 | 80 | $>75 \%$ Grass cover, Good, HSG D |
| 7,490 | 81 | Weighted Average |
| 6,934 | | 92.58\% Pervious Area |
| 556 | | 7.42% Impervious Area |

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Reach 2R: R1

Inflow Area $=\quad 0.980$ ac, 77.97% Impervious, Inflow Depth > 2.70" for WQV USSF 1 event
Inflow $=1.99$ cfs @ 12.24 hrs , Volume $=0.221$ af
Outflow $=1.81 \mathrm{cfs} @ 12.35 \mathrm{hrs}$, Volume $=0.219 \mathrm{af}$, Atten= 9%, Lag= 7.0 min
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Max. Velocity $=0.53 \mathrm{fps}$, Min. Travel Time $=3.1 \mathrm{~min}$
Avg. Velocity $=0.24 \mathrm{fps}$, Avg. Travel Time $=7.0 \mathrm{~min}$
Peak Storage= 341 cf @ 12.30 hrs
Average Depth at Peak Storage= 0.25^{\prime}
Bank-Full Depth= 1.00 ' Flow Area= 26.7 sf, Capacity= 35.42 cfs
40.00 ' x 1.00 ' deep Parabolic Channel, $n=0.400$

Length= 100.0' Slope= 0.2200 '/'
Inlet Invert= 102.00', Outlet Invert= 80.00'

Summary for Pond P1: P1

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 118.84' @ 12.24 hrs Surf.Area= 3,249 sf Storage= 4,405 cf
Plug-Flow detention time $=125.6$ min calculated for 0.220 af (80% of inflow)
Center-of-Mass det. time= $72.5 \mathrm{~min}(823.9-751.4)$

Summary for Pond P3: Drip Edge

Inflow Area =	0	th > 3.74" for WQV USSF 1 event
Inflow	0.61 cfs @ 12.09 hrs , Volume=	0.047 af
Outflow	0.12 cfs @ 12.47 hrs, Volume=	0.026 af, Atten= 81\%, Lag= 23.0 min
Primary	0.12 cfs @ 12.47 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2
Peak Elev= 122.50' @ 12.45 hrs Surf.Area= 800 sf Storage= 961 cf
Plug-Flow detention time $=143.3 \mathrm{~min}$ calculated for 0.026 af (57% of inflow)
Center-of-Mass det. time $=58.2 \min (794.4-736.2)$

Summary for Pond P4: Drip Edge

w Area =	0.040 ac,100.00\% Impervious, Inflow Depth > 3.74" for WQV USSF 1 event			
Inflow	0.16 cfs @	12.09 hrs , Volume=	0.013 af	
Outflow	0.11 cfs @	12.32 hrs , Volume=	0.008 af ,	Atten $=34 \%$, Lag $=13.9 \mathrm{~min}$
Primary	0.11 cfs @	12.32 hrs , Volume=	0.008 af	

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 122.50' @ 12.30 hrs Surf.Area= 200 sf Storage= 240 cf
Plug-Flow detention time= 121.1 min calculated for 0.008 af (66% of inflow)
Center-of-Mass det. time= 47.9 $\min (784.1-736.2$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	119.50^{\prime}	280 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		700 cf Overall $\times 40.0 \%$ Voids	

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
119.50	200	0	0
123.00	200	700	700

Device	Routing	Invert	Outlet Devices
\#1	Primary	122.50'	125.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80
			2.503 .00
			Coef. (English) $2.692 .722 .75 \quad 2.85 \quad 2.9830 .0833 .203 .283 .31$
			3.303 .313 .32
\#2	Primary	119.50'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Primary OutFlow Max=0.05 cfs @ 12.32 hrs HW=122.50' (Free Discharge)
-1=Broad-Crested Rectangular Weir (Weir Controls 0.05 cfs @ 0.14 fps)
-2=Exfiltration (Exfiltration Controls 0.00 cfs)

Summary for Link POA1: POA \#1

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1P: 1P	Runoff Area=129,181 sf 0.00% Impervious Runoff Depth>1.20"
	Flow Length=400' Tc=9.5 min CN=78 Runoff=3.88 cfs 0.296 af
Subcatchment2P: P2	Runoff Area=7,295 sf 34.13% Impervious Runoff Depth >1.74 " Flow Length=352' Tc=22.1 min CN=86 Runoff=0.24 cfs 0.024 af
Subcatchment3P: 3P	Runoff Area=42,669 sf 77.97% Impervious Runoff Depth >2.44 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=94$ Runoff=$=2.77 \mathrm{cfs} 0.199$ af
Subcatchment 4P: 4P	Runoff Area $=6,503$ sf 100.00% Impervious Runoff Depth >2.81 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.46 \mathrm{cfs} 0.035$ af
Subcatchment5P: 5P	Runoff Area $=1,762$ sf 100.00% Impervious Runoff Depth >2.81 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.12 \mathrm{cfs} 0.009$ af
Subcatchment6P: 6P	Runoff Area $=7,490 \mathrm{sf} \quad 7.42 \%$ Impervious Runoff Depth >1.39 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=81$ Runoff $=0.30 \mathrm{cfs} 0.020$ af
Reach 2R: R1	Avg. Flow Depth=0.11' Max Vel=0.31 fps Inflow=0.31 cfs 0.153 af $\mathrm{n}=0.400 \mathrm{~L}=100.0$ ' $\mathrm{S}=0.2200$ '/' Capacity=35.42 cfs Outflow=0.30 cfs 0.151 af
Pond P1: P1	Peak Elev=118.74' Storage=4,085 cf Inflow=2.77 cfs 0.199 af Primary $=0.31$ cfs 0.153 af Secondary $=0.00$ cfs 0.000 af Outflow= 0.31 cfs 0.153 af
Pond P2: Rain Garden	Peak Elev=117.99' Storage=394 cf Inflow=0.24 cfs 0.024 af Discarded $=0.06$ cfs 0.023 af Primary $=0.00$ cfs 0.000 af Outflow $=0.06$ cfs 0.023 af
Pond P3: Drip Edge	Peak Elev=122.09' Storage=828 cf Inflow=0.46 cfs 0.035 af Outflow=0.02 cfs 0.019 af
Pond P4: Drip Edge	Peak Elev=122.40' Storage=232 cf Inflow=0.12 cfs 0.009 af Outflow=0.00 cfs 0.005 af
Link POA1: POA \#1	Inflow=4.01 cfs 0.447 af Primary $=4.01$ cfs 0.447 af
Link POA2: POA \#2	$\begin{aligned} & \text { Inflow=}=0.32 \mathrm{cfs} \quad 0.044 \mathrm{af} \\ & \text { Primary }=0.32 \text { cfs } 0.044 \mathrm{af} \end{aligned}$

Total Runoff Area $=4.474$ ac Runoff Volume $=0.584$ af Average Runoff Depth $=1.57$ "
77.13% Pervious = 3.451 ac 22.87% Impervious = 1.023 ac

Summary for Subcatchment 1P: 1P

Runoff $=\quad 3.88$ cfs @ 12.14 hrs, Volume $=\quad 0.296$ af, Depth> 1.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 2 Rainfall=3.24"

Summary for Subcatchment 2P: P2

Runoff $=\quad 0.24$ cfs @ 12.31 hrs, Volume $=0.024$ af, Depth> 1.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 2 Rainfall=3.24"

	Area (sf)	CN	Description		
A	$\begin{array}{r} 2,490 \\ 4,805 \\ \hline \end{array}$	$\begin{array}{ll} 98 \\ 80 \\ 8 \end{array}$	DRIVE/WALK$>75 \%$ Grass cover, Good, HSG D		
	$\begin{aligned} & 7,295 \\ & 4,805 \\ & 2,490 \end{aligned}$	86	Weighted Average 65.87\% Pervious Area 34.13\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
19.1	100	0.0100	0.09		Sheet Flow, A TO B SHEET Grass: Dense n=0.240 P2=3.10"
3.0	- 252	0.0400	1.40		Shallow Concentrated Flow, B TO C Short Grass Pasture Kv=7.0 fps
22.1	352	Total			

Summary for Subcatchment 3P: 3P

$$
\text { Runoff }=\quad 2.77 \text { cfs @ } 12.09 \text { hrs, Volume= } \quad 0.199 \text { af, Depth> 2.44" }
$$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 2 Rainfall=3.24"

	Area (sf)	CN	Description
$*$	25,690	98	PAVE
$*$	6,320	98	HALF BUILDING
$*$	9,401	80	$>75 \%$ Grass cover, Good, HSG D
1,258	98	SIDEWALK	
42,669	94	Weighted Average	
9,401		22.03\% Pervious Area	
	33,268		77.97% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment 4P: 4P

Runoff $=0.46$ cfs @ 12.09 hrs, Volume= 0.035 af, Depth> 2.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 2 Rainfall=3.24"

	Area (sf)	CN	Description
6	6,503	98	HALF BUILDING
6,503		100.00% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 5P: 5P
Runoff $=\quad 0.12$ cfs @ 12.09 hrs, Volume= 0.009 af, Depth> 2.81"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 2 Rainfall=3.24"

	rea (sf)	CN	escription		
*	1,762	98	HALF BUILDING		
	1,762	100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.0					Direct Entry

Summary for Subcatchment 6P: 6P
Runoff $=\quad 0.30$ cfs @ 12.10 hrs, Volume= 0.020 af, Depth> 1.39"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr WQV USSF 2 Rainfall=3.24"

	Area (sf)	CN
*	Description	
556	98	PAVE
6,934	80	$>75 \%$ Grass cover, Good, HSG D
7,490	81	Weighted Average
6,934		92.58\% Pervious Area
556		7.42% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Sirect Entry, |
| :--- |
| 6.0 |
| |
| |

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Max. Velocity $=0.31 \mathrm{fps}$, Min. Travel Time $=5.4 \mathrm{~min}$
Avg. Velocity $=0.22 \mathrm{fps}$, Avg. Travel Time $=7.7 \mathrm{~min}$
Peak Storage= 99 cf @ 12.87 hrs
Average Depth at Peak Storage= 0.11^{\prime}
Bank-Full Depth= 1.00 Flow Area= 26.7 sf, Capacity= 35.42 cfs
40.00 ' x 1.00 ' deep Parabolic Channel, $n=0.400$

Length= 100.0' Slope= 0.2200 '/'
Inlet Invert= 102.00', Outlet Invert= 80.00'

Summary for Pond P1: P1

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 118.74' @ 12.79 hrs Surf.Area= 3,166 sf Storage= 4,085 cf
Plug-Flow detention time $=164.6$ min calculated for 0.153 af (77% of inflow)
Center-of-Mass det. time $=106.4 \mathrm{~min}$ (864.1-757.6)

Summary for Pond P2: Rain Garden

Inflow Area =	0.167 ac, 34.13\% Impervious, Inflow Depth > 1.74" for WQV USSF 2 event			
Inflow	0.24 cfs @	12.31 hrs, Volume=	0.024 af	
Outflow	0.06 cfs @	12.92 hrs , Volume=	0.023 af ,	Atten= 73\%, Lag $=36.5 \mathrm{~min}$
Discarded	0.06 cfs @	12.92 hrs , Volume=	0.023 af	
Primary	0.00 cfs @	12.92 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev= 117.99' @ 12.92 hrs Surf.Area= 1,038 sf Storage= 394 cf
Plug-Flow detention time $=91.7 \mathrm{~min}$ calculated for 0.023 af (96% of inflow)
Center-of-Mass det. time= 78.0 min (877.9-799.9)

Summary for Pond P3: Drip Edge

Inflow Area =	$0.149 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth > 2.81" for WQV USSF 2 event			
Inflow	0.46 cfs @	12.09 hrs , Volume=	0.035 af	
Outflow	0.02 cfs @	9.65 hrs , Volume=	0.019 af,	Atten $=96 \%, L a g=0.0 \mathrm{~min}$
Primary	0.02 cfs @	9.65 hrs, Volume=	0.019 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2
Peak Elev= 122.09' @ 15.04 hrs Surf.Area= 800 sf Storage= 828 cf
Plug-Flow detention time $=162.8 \mathrm{~min}$ calculated for 0.019 af (55% of inflow)
Center-of-Mass det. time $=76.7 \mathrm{~min}(815.1-738.4)$

Summary for Pond P4: Drip Edge

w Area =	$0.040 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth > 2.81" for WQV USSF 2 event			
Inflow	0.12 cfs @	12.09 hrs , Volume=	0.009 af	
Outflow	0.00 cfs @	9.40 hrs , Volume=	0.005 af ,	Atten= 96\%, Lag= 0.0 min
Primary	0.00 cfs @	9.40 hrs , Volume=	0.005 af	

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 122.40' @ 15.29 hrs Surf.Area= 200 sf Storage= 232 cf
Plug-Flow detention time $=162.2$ min calculated for 0.005 af (52% of inflow)
Center-of-Mass det. time $=71.8 \min (810.3-738.4)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	119.50	280 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		700 cf Overall $\times 40.0 \%$ Voids	

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
119.50	200	0	0
123.00	200	700	700

Device	Routing	Invert	Outlet Devices
\#1	Primary	122.50'	125.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80
			2.503 .00
			Coef. (English) $2.692 .722 .75 \quad 2.85 \quad 2.9830 .0833 .203 .283 .31$
			3.303 .313 .32
\#2	Primary	119.50'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Primary OutFIow Max=0.00 cfs @ $9.40 \mathrm{hrs} \mathrm{HW=119.54'} \mathrm{(Free} \mathrm{Discharge)}$
$\boxed{1}=$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)
$\mathbf{2 = E x f i l t r a t i o n ~ (E x f i l t r a t i o n ~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Link POA1: POA \#1

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA \#2

Primary outflow $=$ Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

United States Department of Agriculture

Natural
Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Cumberland County and Part of Oxford County, Maine

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
How Soil Surveys Are Made 5
Soil Map 8
Soil Map. 9
Legend 10
Map Unit Legend 12
Map Unit Descriptions. 12
Cumberland County and Part of Oxford County, Maine 14
BuC2-Buxton silt loam, 8 to 15 percent slopes. 14
HsC-Lyman-Abram complex, 8 to 15 percent slopes, very rocky 15
References 17

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)	Spoil Area		
Soils		Sor Interest (AOI)	Sap Unit Polygons
Spery Stony Spot			

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Cumberland County and Part of Oxford County, Maine
Survey Area Data: Version 18, Aug 31, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 22, 2021—Oct 7, 2021

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BuC2	Buxton silt loam, 8 to 15 percent slopes	8.9	
HsC	Lyman-Abram complex, 8 to 15 percent slopes, very rocky	2.9	$\mathbf{7 5 . 5 \%}$
Totals for Area of Interest		$\mathbf{1 1 . 8}$	$\mathbf{1 0 0 . 0 \%}$

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.
Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Cumberland County and Part of Oxford County, Maine

BuC2—Buxton silt loam, 8 to 15 percent slopes

Map Unit Setting
National map unit symbol: 2x1by
Elevation: 10 to 490 feet
Mean annual precipitation: 33 to 60 inches
Mean annual air temperature: 36 to 52 degrees F
Frost-free period: 90 to 160 days
Farmland classification: Not prime farmland
\section*{Map Unit Composition}
Buxton and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
\section*{Description of Buxton}
\section*{Setting}
Landform: Marine terraces, river valleys
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Fine glaciomarine deposits
\section*{Typical profile}
Ap-0 to 7 inches: silt loam
Bw1-7 to 18 inches: silt loam
Bw2-18 to 23 inches: silty clay loam
BC - 23 to 35 inches: silty clay loam
C-35 to 65 inches: silty clay
Properties and qualities
Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately
low (0.00 to $0.14 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 17 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to $1.9 \mathrm{mmhos} / \mathrm{cm}$)
Available water supply, 0 to 60 inches: High (about 9.1 inches)
\section*{Interpretive groups}
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: C/D
Hydric soil rating: No

HsC-Lyman-Abram complex, 8 to 15 percent slopes, very rocky

Map Unit Setting

National map unit symbol: 2x1d1
Elevation: 0 to 520 feet
Mean annual precipitation: 36 to 65 inches
Mean annual air temperature: 36 to 52 degrees F
Frost-free period: 90 to 160 days
Farmland classification: Not prime farmland

Map Unit Composition

Lyman and similar soils: 45 percent
Abram and similar soils: 35 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Lyman

Setting
Landform: Hills, ridges
Landform position (two-dimensional): Summit, shoulder, backslope
Landform position (three-dimensional): Nose slope, crest
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Loamy supraglacial till derived from granite and gneiss and/or loamy supraglacial till derived from phyllite and/or loamy supraglacial till derived from mica schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material
A-1 to 3 inches: loam
E-3 to 5 inches: fine sandy loam
Bhs -5 to 7 inches: loam
Bs1-7 to 11 inches: loam
Bs2-11 to 18 inches: channery loam
$R-18$ to 79 inches: bedrock
Properties and qualities
Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.5 percent
Depth to restrictive feature: 11 to 24 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to $14.03 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.2 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: D
Hydric soil rating: No

Description of Abram

Setting

Landform: Ridges, hills
Landform position (two-dimensional): Summit, shoulder
Landform position (three-dimensional): Nose slope, crest
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Loamy subglacial till

Typical profile

Oa - 0 to 2 inches: highly decomposed plant material
E - 2 to 3 inches: loam
Bs - 3 to 6 inches: loam
$R-6$ to 79 inches: bedrock

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.5 percent
Depth to restrictive feature: 3 to 13 inches to lithic bedrock
Drainage class: Excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to $0.14 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 1.1 inches)
Interpretive groups
Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: D
Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Section H

Erosion \& Sedimentation Control Report

H. WHITE ROCK TERRACE EROSION \& SEDIMENTATION CONTROL REPORT

Prepared For:

The Szanton Company
Portland, Maine 04103

Prepared By:
Acorn Engineering, Inc. 500 Washington Avenue
Portland, Maine 04103

October 2022

INTRODUCTION

Acorn Engineering, Inc. has been retained by Szanton Company to provide civil engineering services for the proposed development at Sky View Drive. The property consists of approximately 4.47 acres of land and contains the following parcels (Map R1, Lot 107A).

The following Erosion and Sedimentation Control Report was developed in accordance with the Maine DEP Chapter 500 Stormwater Management Appendix A and B (1), Amended August 12, 2015. This narrative also meets the standards required in the Maine DEP's Erosion \& Sediment Control BMP's Manual, revised in 2016.

1.0 EXISTING CONDITIONS

The proposed project site is located off Read Street and abuts a railroad bed to the west. A Boundary \& Topographic Survey has been prepared by Owen Haskell, Inc., dated October 7, 2022.

Abutting Uses include:

$>$	North	Residential Use
$>$	South/East	Commercial Use
$>$	West	I-295

The project features the development of a single four-story building with 55 one- and two-bedroom affordable rental units designated for senior housing. The building has a footprint of roughly 12,000 square feet and the development will provide 78 parking spaces and vehicular and pedestrian circulation. The site in its existing condition drains water in roughly two directions, to the east and west. Please see the Stormwater Report for more detailed information on the existing and proposed sub catchments.

1.1 Existing Soils

Onsite soil information includes the following:
> Soil Conservation Service Medium Intensity Soil Survey for Cumberland County
> United States Department of Agriculture Web Soil Survey
The area within and surrounding the project includes soil types listed in the table below. The susceptibility of soils to erosion is indicated on a relative " K " scale of values over a range of 0.02 to 0.69 . Higher " K " values indicate more erodible soils.

Table 1 - "K" Value		
Soils Type	Subsurface	Substratum
Buxton silt loam	0.49	0.49
Lyman-Abram complex	0.32	0.32

The soil "K" value for the soil, listed above, shows a higher susceptibility to erosion, as derived from the Soil Conservation Service Medium Intensity Soil Survey for Cumberland County. Implementation of the proposed Erosion \& Sedimentation Measures by the contractor will be important to limit erosion during large storm events.

1.2 Existing Erosion Problems

There are no signs of erosion.

1.3 Critical Areas

There are no critical areas that require special attention during construction.

1.4 Protected Natural Resource

The client is not aware of the presence of any existing significant natural features located on the site as listed in Section 14-526 (b) 1. of the Land Use Code. The project is not located within a watershed classified as an Urban Impaired Stream by the Maine DEP.

1.5 Previous Construction Activity (5 years)

Acorn Engineering, Inc. is not aware of any construction related activities within the project limits within the past 5 years. Historical imagery shows the existence of a warehouse in the proposed footprint until around 2012.

1.6 Timber Harvesting

Acorn Engineering, Inc. is not aware of any timber harvesting within the past five years.

A C O R N Engineering, Inc. • www.acorn-engineering.com 207-775-2655 • PO Box 3372 • Portland • Maine • 04104

2.0 EROSION CONTROL MEASURES AND SITE STABILIZATION

As part of the site development, the following temporary and permanent erosion and sedimentation control devices shall be implemented. Devices shall be installed as described in this report or within the plan set. See the Maine Erosion and Sediment Control Handbook for Construction: Best Management Practices for further reference.

2.1 Temporary Erosion Control Measures

The following temporary erosion and sedimentation control measures are planned for the project's construction period:
2.1.1 Crushed stone stabilized construction entrances shall be placed at all access points to the project site where there are disturbed areas. The following specifications shall be followed at a minimum:

- Stone size shall be 2-3 inches, or reclaimed or recycled concrete equivalent.
- The thickness of the entrance stone layer shall be no less than 6 inches.
- The entrance shall not be less than 20 feet wide, however not less than the full width of points where ingress or egress occurs. The length shall not be less than 50 feet in length.
- Geotextile fabric (woven or non-woven) shall be placed over the entire entrance area.
- The entrance/exit shall be maintained to the extent that it will prevent the tracking of sediment onto public road ways.
2.1.2 Siltation fence or erosion control berm shall be installed down gradient of any disturbed areas to trap runoff borne sediments until permanent stabilization is achieved. The silt fence or erosion control berm shall be installed per the details provided in the plan set and inspected before and immediately after each rainfall and at least daily during prolonged rainfall. Repairs shall be made if there are any signs of erosion or sedimentation below the fence line or berm. If there are signs of undercutting at the center or the edges, or impounding of large volumes of water behind the fence or berm, the barrier shall be replaced with a stone check dam.
2.1.3 Hay mulch including hydro seeding is intended to provide cover for denuded or seeded areas until revegetation is established. Mulch placed between April $15^{\text {th }}$ and November $1^{\text {st }}$ on slopes of less than 15 percent shall be covered by fabric netting and anchored with staples in accordance with the manufacturer's recommendation. Mulch placed between November $1^{\text {st }}$ and April $15^{\text {th }}$ on slopes equal to or steeper than 8 percent and equal to or flatter than $2: 1$ shall use mats or fabric netting and anchored with staples in accordance with the manufacturer's recommendation.
2.1.4 At any time of the year, all slopes greater than $3: 1$ shall be stabilized with Double Net Erosion Control Blanket Bionet SC150BN by North American

A C O R N Engineering, Inc. *ww.acorn-engineering.com 207-775-2655 • PO Box 3372 • Portland • Maine • 04104

Green or Approved Equal, or Erosion Control Mix Slope Protection as detailed within the plans.
2.1.5 Sky View Drive shall be swept to control mud and dust from the construction site as necessary. Add additional stone to the stabilized construction entrance to minimize the tracking of material off the site and onto the surrounding roadways.
2.1.6 During demolition, clearing and grubbing operations, stone check dams shall be installed at any areas of concentrated flow. The maximum height of the check dam shall not exceed 2 feet. The center of the check dam shall be 6 inches below the outer edges of the dam. The contractor shall mulch the side slopes and install stone check dams for all newly excavated ditch lines within 24 hours of their creation.
2.1.7 Silt fence stake spacing shall not exceed 6 feet unless the fence is supported with 14 -gauge wire in which case the maximum spacing shall not exceed 10 feet. The silt fence shall be "toed" into the ground.
2.1.8 Storm drain inlet protection shall be provided to storm drains using any of the following: hay bale drop inlet structures, silt fence drop inlet sediment filter, gravel and wire mesh drop inlet sediment filter, or curb inlet sediment filter. Barriers shall be inspected after every rainfall event and repaired as necessary. Sediments shall be removed when accumulation has reached $1 / 2$ the design height.
2.1.9 Dust control shall be accomplished using any of the following: water, calcium chloride, stone, or an approved MDEP product. Dust control shall be applied as needed to accomplish dust control.
2.1.10 Temporary loam, seed, and mulching shall be used in areas where no other erosion control measure is used. Application rates for seeding are provided at the end of this report.
2.1.11 Stockpiles shall be stabilized within 7 days of formation unless a scheduled rain event occurs prior to the 7 -day window, in which case the stockpile shall be stabilized prior to the rain event. Methods of stabilization shall be mulch, erosion control mix, or erosion control blankets/mats. Silt fence or a wood waste compost filter berm shall be placed downhill of any soil stockpile location.
2.1.12 For disturbance between November 1 and April 15, please refer to winter stabilization plan in this report and the Maine Erosion and Sediment Control BMP manual for further information.
2.1.13 It is of the utmost importance that stormwater runoff and potential sediment from the construction site be diverted around the proposed underdrains until the trench is backfilled.

A C O R N Engineering, Inc. - www.acorn-engineering.com 207-775-2655 • PO Box 3372 • Portland • Maine • 04104

2.2 Permanent Erosion Control Measures

The following permanent erosion control measures are intended for post disturbance areas of the project.
2.2.1 All disturbed areas during construction, not subject to other proposed conditions, shall receive a minimum 4 " of loam, limed, and mulched. Erosion control blankets or mats shall be placed over the mulch in areas noted in paragraph 4.1 of this report.
2.2.2 All stormwater devices shall be installed, and tributary areas stabilized prior receiving stormwater.
2.2.3 Refer to the Maine Erosion and Sediment Control BMP manual for additional information.

3.0 DETAILS AND SPECIFICATIONS

3.1 Erosion \& Sedimentation Control Details and Specifications are included in the plan set.

4.0 STABILIZATION PLAN FOR WINTER CONSTRUCTION

Winter Construction consists of earthwork disturbance between the dates of November 1 and April 15. If a construction site is not stabilized with pavement, a road gravel base, 75% mature vegetation cover or riprap by November 15, then the site shall be protected with overwinter stabilization. Any area not stabilized with pavement, vegetation, mulching, erosion control mix, erosion control mats, riprap, or gravel base on a road shall be considered open.

The contractor shall limit the work area to areas that work will occur in during the subsequent 15 days and so that it can be mulched one day prior to a snow event. The contractor shall stabilize work areas prior to opening additional work areas to minimize areas without erosion control measures.

The following measures shall be implemented during winter construction periods:

4.1 Sediment Barriers

During frozen conditions, sediment barriers may consist of erosion control mix berms or any other recognized sediment barriers as frozen soil prevents the proper installation of hay bales or silt fences.
4.2 Mulching

All areas shall be considered to be denuded until seeded and mulched. Hay and straw mulch shall be applied at a rate of 150 lb . per 1,000 square feet or 3 tons/acre (twice the normal accepted rate of $75-\mathrm{lbs} . / 1,000$ s.f. or 1.5 tons/acre) and shall be properly

A C O R N Engineering, Inc. - www.acorn-engineering.com 207-775-2655 • PO Box 3372 • Portland • Maine • 04104
anchored. Erosion control mix must be applied with a minimum 4-inch thickness. Mulch shall not be spread on top of snow. The snow shall be removed down to a oneinch depth or less prior to application. After each day of final grading, the area shall be properly stabilized with anchored hay or straw or erosion control matting. An area shall be considered to have been stabilized when exposed surfaces have been either mulched or adequately anchored so that ground surface is not visible through the mulch. Between the dates of November 1 and April 15, all mulch shall be anchored by either mulch netting, tracking or wood cellulose fiber. The cover will be considered sufficient when the ground surface is not visible through the mulch. After November $1^{\text {st }}$, mulch and anchoring of all exposed soil shall occur at the end of each final grading workday.

4.3 Soil Stockpiling

Stockpiles of soil or subsoil shall be mulched for over winter protection with hay or straw at twice the normal rate or with a four-inch layer of erosion control mix. This shall be done within 24 hours of stocking and re-established prior to any rainfall or snowfall.

4.4 Seeding

Between the dates of October $15^{\text {th }}$ and April $1^{\text {st }}$, loam or seed shall not be required. During periods of above freezing temperatures finished areas shall be fine graded and either protected with mulch or temporarily seeded and mulched until the final treatment can be applied. If the date is after November $1^{\text {st }}$ and if the exposed area has not been loamed, final grading with a uniform surface, then the area may be dormant seeded at a rate of 3 times higher than specified for permanent seed and then mulched.

Dormant seeding may be placed prior to the placement of mulch or erosion control blankets. If dormant seeding is used for the site, all disturbed areas shall receive 4" of loam and seed at an application rate of $5 \mathrm{lbs} . / 1,000$ s.f. All areas seeded during the winter shall be inspected in the spring for adequate catch. All areas insufficiently vegetated (less than 75% catch) shall be revegetated by replacing loam, seed and mulch. If dormant seeding is not used for the site, all disturbed areas shall be revegetated in the spring.

4.5 Over winter stabilization of disturbed soils

By September $15^{\text {th }}$, all disturbed soils on areas having a slope less than 15% shall be seeded and mulched. If the disturbed areas are not stabilized by this date, then one of the following actions shall be taken to stabilize the soil for late fall and winter:

- Stabilize the soil with temporary vegetation - By October $1^{\text {st }}$, seed the disturbed soil with winter rye at a seeding rate of 3 lbs per 1,000 s.f., lightly mulch the seeded soil with hay or straw at 75 lbs per 1,000 s.f., and anchor the mulch with plastic netting. Monitor growth of the rye over the next 30 days. If the rye fails to grow at least three inches or fails to cover at least 75% of the disturbed soil before November $1^{\text {st }}$, then mulch the area for over-winter protection.
- Stabilize the soil with sod - Stabilize the disturbed soil with properly installed sod by October $1^{\text {st. }}$. Proper installation includes pinning the sod onto the soil with wire pins, rolling the sod to guarantee contact between the sod and underlying soil, and watering the sod to promote root growth into the disturbed soil.
- Stabilize the soil with mulch - By November $15^{\text {th }}$, mulch the disturbed soil by spreading hay or straw at a rate of at least 150 lbs per 1,000 s.f. on the area so that no soil is visible through the mulch. Immediately after applying the mulch, anchor the mulch with plastic netting to prevent wind from moving the mulch off the disturbed soil.

4.6 Over winter stabilization of disturbed slopes

All stone-covered slopes shall be constructed and stabilized by November 15 ${ }^{\text {th }}$. All slopes to be vegetated shall be seeded and mulched by September $1^{\text {st }}$. A slope is considered a grade greater than 15%. If a slope to be vegetated is not stabilized by September $1^{\text {st }}$, then one of the following action shall be taken to stabilize the slope for late fall and winter:

- Stabilize the soil with temporary vegetation and erosion control mats - By October $1^{\text {st }}$ the disturbed slope shall be seeded with winter rye at a seeding rate of 3 lbs per 1,000 s.f. and then install erosion control mats or anchored mulch over the seeding. If the rye fails to grow at least three inches or fails to cover at least 75% of the slope by November $1^{\text {st }}$, then the contractor shall cover the slope with a layer of erosion control mix or with stone riprap.
- Stabilize the soil with sod - The disturbed slope shall be stabilized with properly installed sod by October $1^{\text {st. }}$. Proper installation includes the contractor pinning the sod onto the slope with wire pins, rolling the sod to guarantee contact between the sod and underlying soil, and watering the sod to promote root growth into the disturbed soil. The contractor shall not use late-season sod installation to stabilize slopes having a grade greater than $3 \mathrm{H}: 1 \mathrm{~V}$ or having groundwater seeps on the slope face.
- Stabilize the soil with erosion control mix - Erosion control mix shall be properly installed by November $15^{\text {th }}$. The contractor shall not use erosion control mix to stabilize slopes having grades greater than $2 \mathrm{H}: 1 \mathrm{~V}$ or having groundwater seeps on the slope face.
- Stabilize the soil with stone riprap - Place a layer of stone riprap on the slope by November $15^{\text {th }}$. A registered professional engineer shall be hired to determine the stone size needed for stability on the slope and to design a filter layer for underneath the riprap.

5.0 INSPECTION AND MAINTENANCE

A person with knowledge of erosion and stormwater control, including the standards and conditions in the permit, shall conduct periodic visual inspections of installed erosion control measures. The frequency of inspection shall occur at least once every two weeks, as well as after a "storm event". A "storm event" shall consist 0.5 inches of rain within a 24 -hour period. The following Erosion and Sediment Control - Best Management Practices (BMP's) shall inspected in the manner as described.

5.1 Sediment Barriers

Hay bale barriers, silt fences and filter berms shall be inspected and repaired for the following if there are any signs of erosion or sedimentation below them. If there are signs of undercutting at the center or the edges of the barrier, or impounding of large volumes of water behind them, sediment barriers shall be replaced with a temporary check dam. Should the fabric on a silt fence or filter barrier decompose or become ineffective prior to the end of the expected usable life and the barrier is still necessary, the fabric shall be replaced promptly. Sediment deposits should be removed when deposits reach approximately one-half the height of the barrier. Filter berms should be reshaped as needed. Any sediment deposits remaining in place after the silt fence or filter barrier is no longer required should be dressed to conform to the existing grade, prepared and seeded.

5.2 Stabilized Stone Construction Entrances

The exit shall be maintained in a condition that will prevent tracking of sediment onto public rights-of-way. When the control pad becomes ineffective, the stone shall be removed along with the collected soil material and redistributed on site in a stable manner. The entrance should then be reconstructed. The contractor shall sweep or wash pavement at exits, which have experienced mud-tracking on to the pavement or traveled way. When washing is required, it shall be done on an area stabilized with aggregate, which drains into an approved sediment trapping device. All sediment shall be prevented from entering storm drains, ditches, or waterways.

6.3 Mulched Areas

All mulches must be inspected periodically, in particular after rainstorms, to check for rill erosion. If less than 90% of the soil surface is covered by mulch, additional mulch shall be immediately applied. Nets must be inspected after rain events for dislocation or failure. If washouts or breakage occur, re-install the nets as necessary after repairing damage to the slope. Where mulch is used in conjunction with ornamental plantings, inspect periodically throughout the year to determine if mulch is maintaining coverage of the soil surface. Repair as needed.

6.4 Dust Control

When temporary dust control measures are used, repetitive treatment shall be applied as needed to accomplish control.

6.5 Stormwater Appurtenances

All underdrains, storm drains, and catch basins need to be operating effectively and free of debris.

6.6 Erosion and Sedimentation Control Inspections:

Acorn Engineering has personnel qualified to conduct Erosion and Sedimentation Control Inspections. For further information, contact:

Contact: Will Savage, PE
Telephone: (207) 775-2655
Qualifications:
> Maine Professional Engineering License \#11419
> Maine DEP - Certified in Maintenance \& Inspection of Stormwater BMP's Cert \#14
$>$ Certified Erosion, Sediment and Storm Water Inspector (CESSWI) Cert \#0293
> Certified Professional in Erosion and Sediment Control (CPESC) Cert. \#4620
The Contractor has sole responsibility for complying with the Erosion and Sedimentation Report/Plan, including control of fugitive dust. The Contractor shall be responsible for any monetary penalties resulting from failure to comply with these standards.

A C O R N Engineering, Inc. • www.acorn-engineering.com 207-775-2655 • PO Box 3372 • Portland • Maine • 04104

6.0 IMPLEMENTATION SCHEDULE

The following implementation sequence is intended to maximize the effectiveness of the above described erosion control measures. Contractors should avoid overexposing disturbed areas and limit the amount of stabilization area.

1. Install a stabilized construction entrance in all locations where construction traffic will enter and exit the site.
2. Install perimeter silt fence or erosion control berm.
3. Install all other erosion control devices as necessary throughout the remainder of this schedule.
4. Commence installation of drainage infrastructure.
5. Prioritize the downhill side to contain runoff within the site while providing an engineered outlet to the municipal storm drain system within Read Street.
6. Commence earthwork operations, associated with the parking lot construction.
7. Commence installation of utilities.
8. Continue earthwork and grading to subgrade as necessary for construction.
9. Complete installation of drainage infrastructure, as well as other utility work.
10. Complete remaining earthwork operations.
11. Install sub-base and base gravels in paved areas.
12. Install paving, curbing and brickwork.
13. Loam, lime, fertilize, seed and mulch disturbed areas and complete all landscaping.
14. Once the site is stabilized and mulching of landscape areas is complete, remove all temporary erosion control measures.
15. Touch up areas without a vigorous catch of grass with loam and seed.
16. Complete site signage and striping.
17. Execute proper maintenance of all temporary and permanent erosion control measures throughout the project.

The above implementation sequence should be generally followed by the site contractor. However, the contractor may construct several items simultaneously. The contractor shall submit to the owner a schedule of the completion of the work. If the contractor is to commence the construction of more than one item above, they shall limit the amount of exposed areas to those areas in which work is expected to be undertaken during the following 30 days.

The contractor shall re-vegetate disturbed areas as rapidly as possible. All areas shall be permanently stabilized within 7 days of final grading or before a storm event. The contractor shall incorporate planned inlets and drainage systems as early as possible into the construction phase.

7.0 CONCLUSION

The above erosion control narrative is intended to minimize the development impact by implementing temporary and permanent erosion control measures. The contractor shall also refer to the Maine Erosion and Sediment Control BMP manual for additional information.

8.0 ATTACHMENTS

- Temporary Seeding Plan

A C O R N Engineering, Inc. - www.acorn-engineering.com 207-775-2655 • PO Box 3372 • Portland • Maine • 04104

TEMPORARY SEEDING PLAN

Site Preparation

The seeded areas shall be feasibly graded out to provide the use of equipment for seedbed preparation, seeding, mulch application, and mulch anchoring. If necessary, the site may require additional temporary erosion control measures outlined in the Erosion Control report.

Seedbed Preparation

Fertilizer shall be applied to the site at a rate of 13.8 pounds per 1,000 square feet. The composition of the fertilizer shall be 10-10-10 (N-P2O5-K2O) or equivalent.

Limestone shall be applied to the site at a rate of 138 pounds per 1,000 square feet.

Seeding

The composition and amount of temporary seed applied to a site shall be determined by the following table:

Seed	Pounds / 1,000 S.F.	Recommended Seeding Dates
Winter Rye	2.57	Aug-15 to Oct-1
Oats	1.84	Apr-1 to Jul-1 Aug-15 to Sep-15
Annual Ryegrass	0.92	Apr-1 to Jul-1
Sudangrass	0.92	May-15 to Aug-15
Perennial	0.92	Aug-15 to Sep-15

Mulching

Mulch shall be applied at a rate of $70 \mathrm{lbs}-90 \mathrm{lbs}$ per 1,000 square feet. The mulch shall be installed at a minimum depth of 4 inches. The seeded area shall be mulched immediately after seed is applied. Mulching during the winter season shall be double the normal amount.

Conclusion

Please refer to the Maine Erosion and Sediment Control BMP manual for additional information pertaining to temporary seeding and mulching.

Section I

Lighting Specifications

Date: Oct 20, 2022
Swaney Lighting
PO Box 1597
Scarborough ME 04070
Phone: (207) 883-7100
Fax: (207) 885-9606

Job Name
 SKYVIEW DRIVE APARTMENTS
 SLA22-53562
 CUMBERLAND ME

Bid Date

Oct 20, 2022

Submittal Date
Oct 20, 2022

Designer \& Consultants:
Swaney Application Design
applications

Project SKYVIEW DRIVE APARTMENTS SLA22-53562
Location CUMBERLAND ME Contact:

ATTACHED WE ARE SENDING YOU 1 COPY OF THE FOLLOWING ITEM:Drawings
Prints
\square Specifications
Information
Plans
区 Submittals
Other:

THESE ARE TRANSMITTED FOR:

Resubmittal for Approval Corrections
Your Use
Review and Comment

Record Bids due on: Other:

Type	MFG	Part
B5	BEACON PRODUCTS	VP-1-160L-135-3K7-5QW-UNV-A-***
	Item Note: 2@180 DEG	
B5	BEACON PRODUCTS	SSSB20-40A-2-B3-***
A4	BEACON PRODUCTS	VP-1-160L-135-3K7-4W-UNV-A-***
A4	BEACON PRODUCTS	SSSB20-40A-1-B3-***

DATE：	LOCATION：
TYPE：	PROJECT：

VIPER Area／Site
 VIPER LUMINAIRE

CATALOG \＃：

FEATURES

－Low profile LED area／site luminaire with a variety of IES distributions for lighting applications such as auto dealership，retail，commercial，and campus parking lots
－Featuring two different optical technologies，Strike and Micro Strike Optics， which provide the best distribution patterns for retrofit or new construction
－Rated for high vibration applications including bridges and overpasses．All sizes are rated for 1．5G
－Control options including photo control，occupancy sensing，NX Lighting Controls＂＇， wiSCAPE and 7－Pin with networked controls
－New customizable lumen output feature allows for the wattage and lumen output to be customized in the factory to meet whatever specification requirements may entail
－Field interchangeable mounting provides additional flexibility after the fixture has shipped

－（14）Is IP65

CONTROL TECHNOLOGY
Nば $\begin{gathered}\text { CONTROLS } \\ \text { wiSCAPE＂}\end{gathered}$

SPECIFICATIONS

CONSTRUCTION

－Die－cast housing with hidden vertical heat fins are optimal for heat dissipation while keeping a clean smooth outer surface
－Corrosion resistant，die－cast aluminum housing with 1000 hour powder coat paint finish
－External hardware is corrosion resistant

OPTICS

－Micro Strike Optics（160，320，480，or 720 LED counts）maximize uniformity in applications and come standard with mid－ power LEDs which evenly illuminate the entire luminous surface area to provide a low glare appearance．Catalog logic found on page 2
－Strike Optics（36， 72,108 ，or 162 LED counts） provide best in class distributions and maximum pole spacing in new applications with high powered LEDs．Strike optics are held in place with a polycarbonate bezel to mimic the appearance of the Micro Strike Optics so both solutions can be combined on the same application．Catalog logic found on page 3
－Both optics maximize target zone illumination with minimal losses at the house－side， reducing light trespass issues．Additional backlight control shields and house side shields can be added for further reduction of illumination behind the pole
－One－piece silicone gasket ensures a weatherproof seal
－Zero up－light at 0 degrees of tilt
－Field rotatable optics

INSTALLATION

－Mounting patterns for each arm can be found on page 11
－Optional universal mounting block for ease of installation during retrofit applications． Available as an option（ASQU）or accessory for square and round poles

INSTALLATION（CONTINUED）

－All mounting hardware included
－Knuckle arm fitter option available for 2－3／8＂ OD tenon
－For products with EPA less than 1 mounted to a pole greater that 20 ft ，a vibration damper is recommended

ELECTRICAL

－Universal 120－277 VAC or 347－480 VAC input voltage， $50 / 60 \mathrm{~Hz}$
－Ambient operating temperature $-40^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
－Drivers have greater than 90% power factor and less than 20\％THD
－LED drivers have output power over－voltage， over－current protection and short circuit protection with auto recovery
－Field replaceable surge protection device provides 20kA protection meeting ANSI／ IEEE C62．41．2 Category C High and Surge Location Category C3；Automatically takes fixture off－line for protection when device is compromised

CONTROLS

－Photo control，occupancy sensor programmable controls，and Zigbee wireless controls available for complete on／off and dimming control
－Please consult brand or sales representative when combining control and electrical options as some combinations may not operate as anticipated depending on your application
－7－pin ANSI C136．41－2013 photocontrol receptacle option available for twist lock photocontrols or wireless control modules （control accessories sold separately）
－0－10V Dimming Drivers are standard and dimming leads are extended out of the luminaire unless control options require connection to the dimming leads．Must specify if wiring leads are to be greater than the 6＂standard

CONTROLS（CONTINUED）

－NX Lighting Controls＂III available with in fixture wireless control module，features dimming and occupancy sensor
－wiSCAPE ${ }^{\circledR}$ available with in fixture wireless control module，features dimming and occupancy sensor．Also available in 7－pin configuration

CERTIFICATIONS

－DLC®（DesignLights Consortium Qualified）， with both Premium and Standard Qualified configurations．Please refer to the DLC website for specific product qualifications at http：／／www．designlights．org
－Listed to UL1598 and CSA C22．2\＃250．0－ 24 for wet locations and $40^{\circ} \mathrm{C}$ ambient temperatures
－1．5 G rated for ANSI C136．31 high vibration applications
－Fixture is IP65 rated
－Meets IDA recommendations using 3K CCT configuration at 0 degrees of tilt
－This product qualifies as a＂designated country construction material＂per FAR 52．225－11 Buy American－Construction Materials under Trade Agreements effective 04／23／2020

WARRANTY

－ 5 year warranty

KEY DATA	
Lumen Range	$5,000-80,000$
Wattage Range	$36-600$
Efficacy Range（LPW）	$92-155$
Weight Ibs．（kg）	$13.7-30.9(6.2-13.9)$

Submitted by Swaney Lighting	
Sin	Job Name: SKYVIEW DRIV APARTMENTS Designer \& Consultants: Swaney Application Design

© 8 beacon

VIPER Area/Site

DATE: LOCATION:
TYPE: \qquad PROJECT:

CATALOG \#

MICROSTRIKE OPTICS - ORDERING GUIDE
Example: VP-2-320L-145-3K7-2-R-UNV-A3-BLT

- Items with a grey background can be done as a custom order. Contact brand representative for more
information
- Replace "-" with " 2 " for $2.5 "-3.4$ " OD pole, " "3" for 3.5 "-4.13" OD pole, "4" for 4.18 "-5.25" OD pole, " 5 "
for $5.5^{\prime \prime}-6.5^{\prime \prime}$ OD pole
3 - Networked Controls cannot be combined with other control options
- Not available with 2PF option
- Not available with Dual Driver option

\qquad LOCATION:

VIPER Area/Site
VIPER LUMINAIRE

TYPE: \qquad PROJECT:

DELIVERED LUMENS

For delivered lumens, please see Lumens Data PDF on www.Currentlighting.com
PROJECTED LUMEN MAINTENANCE

Ambient Temp.	0	25,000	${ }^{*}$ TM-21-11 36,000	50,000	100,000	Calculated L_{70} (Hours)
$25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$	1.00	0.97	0.96	0.95	0.91	408,000
$40^{\circ} \mathrm{C} / 104^{\circ} \mathrm{F}$	0.99	0.96	0.95	0.94	0.89	356,000

LUMINAIRE AMBIENT TEMPERATURE FACTOR (LATF)

Ambient Temperature		Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.03
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.01
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.00
$25^{\circ} \mathrm{C}$	$77^{\circ} \mathrm{F}$	1.00
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	0.99
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.98

Micro Strike Lumen Multiplier				
CCT	70 CRI	80 CRI	90 CRI	
2700 K	-	0.841	-	
3000 K	0.977	0.861	0.647	
3500 K	-	0.900	-	
4000 K	1	0.926	0.699	
5000 K	1	0.937	0.791	
Monochromatic Amber Multiplier				
Amber	0.250			

Strike Lumen Multiplier				
CCT	70 CRI	80 CRI	90 CRI	
2700 K	-	0.859	-	
3000 K	0.941	0.912	0.703	
3500 K	-	0.906	-	
4000 K	1	0.894	0.734	
5000 K	1	0.879	0.711	
Monochromatic Amber Multiplier				
Amber	0.255			

SKYYIEW DRIVE APARTMENTS

Catalog Number:
Type:
VP-1-160L-135-3K7-5QW-UNV-A-***
Notes: 2@180 DEG

898EACON

VIPER Area/Site

DATE: | LOCATION:
TYPE: | PROJECT:

CATALOG \#:

ELECTRICAL DATA: MICRO STRIKE

\# OF LEDS	160						
NOMINAL WATTAGE	35	50	75	100	115	135	160
SYSTEM POWER (W)	34.9	50.5	72.1	97.2	111.9	132.2	157.8
INPUT VOLTAGE (V)	CURRENT (Amps)						
120	0.29	0.42	0.63	0.83	0.96	1.13	1.33
208	0.17	0.24	0.36	0.48	0.55	0.65	0.77
240	0.15	0.21	0.31	0.42	0.48	0.56	0.67
277	0.13	0.18	0.27	0.36	0.42	0.49	0.58
347	0.10	0.14	0.22	0.29	0.33	0.39	0.46
480	0.07	0.10	0.16	0.21	0.24	0.28	0.33

\# OF LEDS	320						
NOMINAL WATTAGE	145	170	185	210	235	255	315
SYSTEM POWER (W)	150	166.8	185.7	216.2	240.9	261.5	312
INPUT VOLTAGE (V)	CURRENT (Amps)						
120	1.21	1.42	1.54	1.75	1.96	2.13	2.63
208	0.70	0.82	0.89	1.01	1.13	1.23	1.51
240	0.60	0.71	0.77	0.88	0.98	1.06	1.31
277	0.52	0.61	0.67	0.76	0.85	0.92	1.14
347	0.42	0.49	0.53	0.61	0.68	0.73	0.91
480	0.30	0.35	0.39	0.44	0.49	0.53	0.66

\# OF LEDS	480						
NOMINAL WATTAGE	285	320	340	390	425	470	
SYSTEM POWER (W)	286.2	316.7	338.4	392.2	423.2	468	
INPUT VOLTAGE (V)							
120	2.38	1.37	2.67	1.54	2.83	1.63	3.25
208	1.19	1.33	1.42	1.88	3.54	2.04	1.77
240	1.03	1.16	1.23	1.41	1.53	2.92	
277	0.82	0.92	0.98	1.12	1.22	1.96	
347	0.59	0.67	0.71	0.81	1.35		
480				0.89	0.98		

\# OF LEDS	720				
NOMINAL WATTAGE	435	475	515	565	600
SYSTEM POWER (W)	429.3	475	519.1	565.2	599.9
INPUT VOLTAGE (V)	CURRENT (Amps)				
120	3.63	3.96	4.29	4.71	5.00
208	2409	2.28	2.48	2.72	2.88
240	1.57	1.98	2.15	2.35	2.50
247	1.25	1.37	1.86	2.04	2.17
480	0.91	0.99	1.48	1.63	1.73

(8) BEACON

VIPER Area/Site
VIPER LUMINAIRE
ELECTRICAL DATA: STRIKE

\# OF LEDS	36					
NOMINAL WATTAGE	39	55	85	105	120	
SYSTEM POWER (W)	39.6	56.8	83.6	108.2	120.9	
INPUT VOLTAGE (V)	CURRENT (Amps)					
120	0.33	0.46	0.71	0.88	0.96	
208	0.19	0.26	0.41	0.50	0.55	
240	0.16	0.23	0.35	0.44	0.48	
277	0.14	0.20	0.31	0.38	0.42	
347	0.11	0.16	0.24	0.30	0.33	
480	0.08	0.11	0.18	0.22	0.24	

\# OF LEDS	72				
NOMINAL WATTAGE	115	145	180	210	240
SYSTEM POWER (W)	113.7	143.2	179.4	210.2	241.7
INPUT VOLTAGE (V)	CURRENT (Amps)				
120	1.00	1.21	1.50	1.75	1.79
208	0.58	0.70	0.87	1.01	1.03
240	0.50	0.60	0.75	0.88	0.90
277	0.43	0.52	0.65	0.76	0.78
347	0.35	0.42	0.52	0.61	0.62
480	0.25	0.30	0.38	0.44	0.45

\# OF LEDS	108				
NOMINAL WATTAGE	215	250	280	325	365
SYSTEM POWER (W)	214.8	250.8	278.3	324.7	362.6
INPUT VOLTAGE (V)	CURRENT (Amps)				
120	2.00	2.08	2.33	3.04	2.67
208	1.00	1.20	1.35	1.75	1.54
240	0.87	1.04	1.17	1.52	1.33
277	0.69	0.90	1.01	1.32	1.16
347	0.50	0.52	0.81	1.05	0.92
480		0.58	0.76	0.67	

\# OF LEDS		162				
NOMINAL WATTAGE	320	365	405	445	485	545
SYSTEM POWER (W)	322.1	362.6	403.6	445.1	487.1	543.9
INPUT VOLTAGE (V)		CURRENT (Amps)				
120	2.71	2.67	3.38	3.71	4.04	4.54
208	1.56	1.54	1.95	2.14	2.33	2.62
240	1.35	1.33	1.69	1.85	2.02	2.27
277	1.17	1.16	1.46	1.61	1.75	1.97
347	0.94	0.92	1.17	1.28	1.40	1.57
480	0.68	0.67	0.84	0.93	1.01	1.14

DATE: LOCATION:
TYPE: PROJECT:
CATALOG \#:

MICRO STRIKE PHOTOMETRY

The following diagrams represent the general distribution options offered for this product. For detailed information on specific product configurations, see website photometric test reports.

Type 2

Type 4F

Type 3

Type 4 Wide

Type 5QW

BEACON
VIPER Area/Site
VIPER LUMINAIRE

OPTIC STRIKE PHOTOMETRY

The following diagrams represent the general distribution options offered for this product. For detailed information on specific product configurations, see website photometric test reports.

Type FR - Front Row/Auto Optic

Type 4 Forward

Type 5R (rectangular)

Type 2

Type 4 Wide

Type 5W (round wide)

Type 3

Type 5QM

Type TC

Type Corner

Submitted by Swaney Lighting	
	Job Name: SKYVIEW DRIVE APARTMENTS Designer \& Consultants: Swaney Application Design

Catalog Number:
VP-1-160L-135-3K7-5QW-UNV-A-***
Type:

Notes: 2@180 DEG

88) BEACON

VIPER Area/Site

DATE: \mid LOCATION:

TYPE: PROJECT:

DIMENSIONS

SIZE 3

	EPA				
	VP1 (Size 1)	VP2 (Size 2)	VP3 (Size 3)	VP4 (Size 4)	Config.
Single Fixture	0.454	0.555	0.655	0.698	θ_{1}
Two at 180	0.908	1.110	1.310	1.396	[1F-
Two at 90	0.583	0.711	0.857	0.948	$\underset{1}{9}$
Three at 90	1.037	1.266	1.512	1.646	易
Three at 120	0.943	1.155	1.392	1.680	$\frac{e^{2}}{0}$
Four at 90	1.166	1.422	1.714	1.896	最

Submitted by Swaney Lighting	
Sob Name:	
	Job SKYVIEW DRIVE APARTMENTS Designer \& Consultants: Swaney Application Design

Catalog Number:

BEACON

VIPER Area/Site

VIPER LUMINAIRE

DATE:	LOCATION:
TYPE:	PROJECT:

CATALOG \#:

MOUNTING

A-STRAIGHT ARM MOUNT

Fixture ships with integral arm for ease of installation. Compatible with Current Outdoor B3 drill pattern. For round poles add applicable suffix (2/3/4/5)

ASQU-UNIVERSAL ARM MOUNT

Universal mounting block for ease of installation. Compatible with drill patterns from $2.5^{\prime \prime}$ to $4.5^{\prime \prime}$ and Current drill pattern S2. For round poles add applicable suffix ($2 / 3 / 4 / 5$)

AAU-ADJUSTABLE ARM FOR POLE MOUNTING

Rotatable arm mounts directly to pole. Compatible with drill patterns from 2.5 " to $4.5^{\prime \prime}$ and Current drill pattern S2. For round poles add applicable suffix (2/3/4/5). Rotatable in 15° aiming angle increments. Micro Strike configurations have a 45° aiming limitation.
Strike configurations have a 30° aiming limitation.

ADU-DECORATIVE UPSWEPT ARM
Upswept Arm compatible with drill patterns from $2.5^{\prime \prime}$ to 4.5". For round poles add applicable suffix (2/3/4/5).

MAF-MAST ARM FITTER

Fits 2-3/8" OD horizontal tenons.

K-KNUCKLE

Knuckle mount 15° aiming angle increments for precise aiming and control, fits 2-3/8" tenons or pipes. Micro Strike configurations have a 45° aiming limitation. Strike configurations have a 30° aiming limitation.

T-TRUNNION

Trunnion for surface and crossarm mounting using (1) $3 / 4^{\prime \prime}$ or (2) $1 / 2^{\prime \prime}$ size through bolts. Micro Strike configurations have a 45° aiming limitation. Strike configurations have a 30° aiming limitation.

WM-WALL MOUNT
Compatible with universal arm mount, adjustable arm mount, and decorative arm mount. The WA option uses the same wall bracket but replaces the decorative arm with an adjustable arm.

BEACON VIPER Area/Site

DATE: \quad LOCATION

TYPE: PROJECT:

ADDITIONAL INFORMATION (CONTINUED)

HOUSE SIDE SHIELD FIELD INSTALL ACCESSORIES

DATE: \qquad LOCATION:

TYPE: PROJECT:

ADDITIONAL INFORMATION (CONTINUED)

 PROGRAMMED CONTROLSADD-AutoDim Timer Based Options

- Light delay options from 1-9 hours after the light is turned on to dim the light by 10-100\%. To return the luminaire to its original light level there are dim return options from 1-9 hours after the light has been dimmed previously.

EX: ADD-6-5-R6

ADD Control Options	Configurations Choices	Example Choice Picked
Auto-Dim Options	$1-9$ Hours	6 - Delay 6 hours
Auto-Dim Brightness	$10-100 \%$ Brightness	5 - Dim to 50% brightness
Auto-Dim Return	Delay 0-9 Hours	R6 - Return to full output after 6 hours

ADT-AutoDim Time of Day Based Option

- Light delay options from 1AM-9PM after the light is turned on to dim the light by $10-100 \%$. To return the luminaire to its original light level there are dim return options from 1AM-9PM after the light has been dimmed previously.

EX: ADT-6-5-R6

ADD Control Options	Configurations Choices	Example Choice Picked
Auto-Dim Options	$12-3$ AM and 6-11 PM	6 - Dim at 6PM
Auto-Dim Brightness	$10-100 \%$ Brightness	5 - Dim to 50%
Auto-Dim Return	$12-6$ AM and 9-11P	R6 - Return to full output at 6AM

This page intentionally left blank for printing purposes

BEACON
DATE: LOCATION: TYPE: PROJECT:

SSS-B Series Poles

CATALOG \#:

SQUARE STRAIGHT STEEL

APPLICATIONS

- Lighting installations for side and top mounting of luminaires with effective projected area (EPA) not exceeding maximum allowable loading of the specified pole in its installed geographic location

CONSTRUCTION

- SHAFT: One-piece straight steel with square cross section, flat sides and minimum $0.23^{\prime \prime}$ radius on all corners; Minimum yield of 46,000 psi (ASTM-A500, Grade B); Longitudinal weld seam to appear flush with shaft side wall; Steel base plate with axial bolt circle slots welded flush to pole shaft having minimum yield of 36,000 psi (ASTM A36)
- BASE COVER: Two-piece square aluminum base cover included standard
- POLE CAP: Pole shaft supplied with removable cover when applicable; Tenon and post-top configurations also available
- HAND HOLE: Rectangular 3×5 steel hand hole frame ($2.38^{\prime \prime} \times 4.38^{\prime \prime}$ opening); Mounting provisions for grounding lug located behind gasketed cover
- ANCHOR BOLTS: Four galvanized anchor bolts provided per pole with minimum yield of 55,000 psi (ASTM F1554). Galvanized hardware with two washers and two nuts per bolt for leveling
Anchor bolt part numbers: $3 / 4 \times 30 \times 3-$ TAB-30-M38

$$
1 \times 36 \times 4-\text { TAB-36-M38 }
$$

FINISH

- Durable thermoset polyester powder coat paint finish with nominal 3.0 mil thickness
- Powder paint prime applied over "white metal" steel substrate cleaned via mechanical shot blast method
- Decorative finish coat available in multiple standard colors; Custom colors available; RAL number preferable

WAREHOUSE ‘STOCKED’ POLES:

- SSSH2O-40A-4-HV-DB-RDC, SSSH25-40A-4-HV-DB-RDC and SSSH30-50B-4-HV-DB-RDC
- The HV designation in the above catalog numbers is a combination drill pattern of the Current S 2 pattern and the Beacon B3/B4 Viper pattern (rectangular arm mounting)

89BEACON

SSS-B Series Poles

DATE:

TYPE:
PROJECT:

SQUARE STRAIGHT STEEL

ORDERING INFORMATION Cont.

Catalog Number	Height		Nominal Shaft Dimensions	Wall Thickness	Bolt Circle (suggested)	Bolt Circle (range)	Bolt Square (range)	Base Plate Square	Anchor bolt size	Bolt Projection	Pole weight
	Feet	Meters									
SSS-B-10-40-A-XX-XX	10	3.0	4" square	$0.125^{\prime \prime}$	$9 "$	8"-10"	5.66" - 7.07"	$9 "$	$3 / 4$ " $\times 30$ " $\times 3$ "	3.5	77
SSS-B-12-40-A-XX-XX	12	3.7	4" square	$0.125^{\prime \prime}$	$9{ }^{\prime \prime}$	8"-10"	$5.66 "$ - 7.07 "	$9 "$	$3 / 4 " \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	90
SSS-B-14-40-A-XX-XX	14	4.3	4" square	0.125 "	$9{ }^{\prime \prime}$	8"-10"	$5.66 "$ - 7.07 "	$9 "$	$3 / 4 " \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	103
SSS-B-16-40-A-XX-XX	16	4.9	4" square	$0.125^{\prime \prime}$	$9{ }^{\prime \prime}$	8"-10"	5.66 " - 7.07"	9 "	$3 / 4^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	116
SSS-B-18-40-A-XX-XX	18	5.5	4" square	$0.125^{\prime \prime}$	$9{ }^{\prime \prime}$	8"-10"	$5.66 "$ - 7.07 "	$9 "$	$3 / 4 " \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	129
SSS-B-20-40-A-XX-XX	20	6.1	4" square	$0.125^{\prime \prime}$	$9{ }^{\prime \prime}$	8"-10"	$5.666^{\prime \prime}-7.07^{\prime \prime}$	9 "	$3 / 4^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	142
SSS-B-25-40-A-XX-XX	25	7.6	4" square	$0.125^{\prime \prime}$	9 "	8"-10"	5.66" - 7.07"	$9 "$	$3 / 4^{\prime \prime} \times 30$ " $3^{\prime \prime}$	3.5	175
SSS-B-14-40-B-XX-XX	14	4.3	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	$3 / 4^{\prime \prime} \times 30$ " $\times 3^{\prime \prime}$	3.5	152
SSS-B-16-40-B-XX-XX	16	4.9	4" square	.188"	11 "	$10^{\prime \prime}-12^{\prime \prime}$	7.07" - 8.48"	10.50"	$3 / 4$ " $\times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	171
SSS-B-18-40-B-XX-XX	18	5.5	4" square	.188"	11"	$10^{\prime \prime}-12{ }^{\prime \prime}$	7.07" - $8.48{ }^{\prime \prime}$	10.50"	$3 / 4^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	190
SSS-B-20-40-B-XX-XX	20	6.1	4" square	.188"	11 "	$10^{\prime \prime}-12{ }^{\prime \prime}$	7.07" - 8.48"	10.50"	$3 / 4^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	209
SSS-B-25-40-B-XX-XX	25	7.6	4" square	.188"	$11^{\prime \prime}$	$10^{\prime \prime}-12^{\prime \prime}$	7.07" - 8.48"	10.50"	$3 / 4 " \times 30$ " $\times 3^{\prime \prime}$	3.5	257
SSS-B-30-40-B-XX-XX	30	9.1	4" square	.188"	11"	$10^{\prime \prime}$ - 12 "	7.07" - 8.48"	10.50"	$3 / 4 " \times 30$ " $3^{\prime \prime}$	3.5	304
SSS-B-16-50-B-XX-XX	16	4.9	5" square	.188"	11 "	10.25" - 13.25 "	7.25" - 9.37 "	11.50"	1" $\times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	219
SSS-B-18-50-B-XX-XX	18	5.5	5" square	.188"	$11^{\prime \prime}$	10.25" - 13.25 "	7.25 " - 9.37"	11.50 "	$1^{\prime \prime} \times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	243
SSS-B-20-50-B-XX-XX	20	6.1	5" square	.188"	$11^{\prime \prime}$	10.25" - $13.25^{\prime \prime}$	7.25 " - 9.37"	11.50 "	$1^{\prime \prime} \times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	267
SSS-B-25-50-B-XX-XX	25	7.6	5" square	.188"	$11^{\prime \prime}$	10.25" - 13.25"	$7.25{ }^{\prime \prime}-9.37^{\prime \prime}$	11.50 "	$1^{\prime \prime} \times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	327
SSS-B-30-50-B-XX-XX	30	9.1	5" square	.188"	$11^{\prime \prime}$	10.25" - 13.25 "	$7.25{ }^{\prime \prime}$ - $9.37{ }^{\prime \prime}$	11.50"	$1^{\prime \prime} \times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	387
SSS-B-25-50-C-XX-XX	25	7.6	5" square	.25"	$11^{\prime \prime}$	10.25" - 13.25 "	7.25 " - 9.37"	11.50 "	1" $\times 36^{\prime \prime} \times 4$ "	4.5	427
SSS-B-30-50-C-XX-XX	30	9.1	5" square	.25"	11"	10.25" - 13.25 "	7.25" - 9.37"	11.50"	$1^{\prime \prime} \times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	507
SSS-B-20-60-B-XX-XX	20	6.1	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" $\times 36^{\prime \prime} \times 6^{\prime \prime}$	4.5	329
SSS-B-25-60-B-XX-XX	25	7.6	6" square	.188"	$12^{\prime \prime}$	11.00" - 13.25"	7.81" - 9.37"	12.25 "	1" $\times 36^{\prime \prime} \times 6^{\prime \prime}$	4.5	404
SSS-B-30-60-B-XX-XX	30	9.1	6 " square	.188"	12 "	11.00" - $13.25^{\prime \prime}$	7.81" - 9.37"	12.25 "	1" $\times 36^{\prime \prime} \times 6^{\prime \prime}$	4.5	479
SSS-B-35-60-B-XX-XX	35	10.7	6 " square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25 "	1" $\times 36^{\prime \prime} \times 6^{\prime \prime}$	4.5	554
SSS-B-40-60-B-XX-XX	40	12.2	6 " square	.188"	$12^{\prime \prime}$	11.00" - 13.25"	7.81" - 9.37"	12.25"	$1^{\prime \prime} \times 36^{\prime \prime} \times 6^{\prime \prime}$	4.5	629

NOTE Factory supplied template must be used when setting anchor bolts. Beacon Products will deny any claim for incorrect anchorage placement resulting from failure to use factory supplied template and anchor bolts.

For more information about pole vibration and vibration dampers, please consult our website.
Due to our continued efforts to improve our products, product specifications are subject to change without notice.

Catalog Number:

(82
 BEACON

SSS-B Series Poles

SQUARE STRAIGHT STEEL

DATE:
TYPE: LOCATION:

CATALOG \#:

ASCE7-05 WIND MAP

ASCE 7-05 wind map EPA Load Rating - 3 second gust wind speeds (Use for all locations except Florida)										
Catalog Number	85	90	100	105	110	120	130	140	145	150
SSS-B-10-40-A	25.0	25.0	25.0	22.8	20.6	17.0	14.2	11.9	11.0	10.1
SSS-B-12-40-A	25.0	25.0	20.0	18.0	16.1	13.2	10.8	8.9	8.1	7.4
SSS-B-14-40-A	23.1	20.4	16.1	14.3	12.8	10.2	8.2	6.6	5.9	5.3
SSS-B-16-40-A	19.0	16.7	13.0	11.5	10.1	7.9	6.2	4.7	4.1	3.6
SSS-B-18-40-A	15.6	13.6	10.0	9.0	7.8	5.9	4.4	3.1	2.6	2.1
SSS-B-20-40-A	12.7	10.9	7.9	6.9	5.9	4.2	2.8	1.7	1.3	0.9
SSS-B-25-40-A	7.3	5.9	3.8	2.9	2.1	0.8	NR	NR	NR	NR
SSS-B-14-40-B	25.0	25.0	23.3	20.8	18.6	15.1	12.3	10.2	9.2	8.4
SSS-B-16-40-B	25.0	24.9	19.4	17.3	15.4	12.3	9.9	8.0	7.2	6.4
SSS-B-18-40-B	24.0	20.8	16.1	14.2	12.5	9.8	7.7	6.1	5.3	4.7
SSS-B-20-40-B	20.2	17.5	13.2	11.6	10.1	7.7	5.9	4.4	3.8	3.2
SSS-B-25-40-B	12.8	11.0	7.9	6.7	5.5	3.7	2.3	1.2	0.7	NR
SSS-B-30-40-B	8.0	6.6	4.1	3.1	2.2	0.8	NR	NR	NR	NR
SSS-B-16-50-B	25.0	25.0	25.0	25.0	24.8	20.1	16.5	13.6	12.3	11.2
SSS-B-18-50-B	25.0	25.0	25.0	22.9	20.4	16.4	13.2	10.7	9.6	8.6
SSS-B-20-50-B	25.0	25.0	21.3	18.9	16.7	13.2	10.4	8.1	7.2	6.3
SSS-B-25-50-B	20.7	17.8	13.3	11.5	9.8	7.2	5.0	3.3	2.6	1.9
SSS-B-30-50-B	13.5	11.3	7.7	6.2	4.9	2.8	1.1	NR	NR	NR
SSS-B-25-50-C	25.0	25.0	19.4	17.1	15.1	11.7	9.0	6.9	6.0	5.1
SSS-B-30-50-C	20.1	17.3	12.7	10.9	9.3	6.6	4.5	2.8	2.1	1.4
SSS-B-20-60-B	25.0	25.0	25.0	25.0	25.0	20.2	16.1	12.9	11.5	10.3
SSS-B-25-60-B	25.0	25.0	20.6	18.0	15.6	11.8	8.7	6.2	5.2	4.2
SSS-B-30-60-B	21.4	18.1	12.9	10.7	8.8	5.7	3.3	1.3	NR	NR
SSS-B-35-60-B	14.0	11.3	6.9	5.2	3.6	1.0	NR	NR	NR	NR
SSS-B-40-60-B	8.1	5.8	2.2	nr						

Florida Building Code 2017 EPA Load Rating - 3 second gust wind speeds (Use for Florida only)								
Catalog Number	115	120	130	140	150	160	170	180
SSS-B-10-40-A	25.0	25.0	25.0	25.0	21.4	18.4	15.9	13.9
SSS-B-12-40-A	25.0	25.0	23.6	19.8	16.7	14.2	12.1	10.4
SSS-B-14-40-A	25.0	23.1	19.0	15.7	13.1	10.9	9.1	7.6
SSS-B-16-40-A	20.8	18.7	15.2	12.3	10.1	8.2	6.7	5.4
SSS-B-18-40-A	16.8	15.0	11.9	9.4	7.5	5.9	4.5	3.4
SSS-B-20-40-A	13.6	11.9	9.2	7.1	5.3	3.9	2.7	1.7
SSS-B-25-40-A	7.4	6.2	4.1	2.5	1.1	NR	NR	NR
SSS-B-14-40-B	25.0	23.6	19.4	16.1	13.4	11.2	9.4	7.8
SSS-B-16-40-B	21.4	19.2	15.6	12.7	10.4	8.5	6.9	5.6
SSS-B-18-40-B	17.2	15.4	12.2	9.7	7.7	6.1	4.7	3.6
SSS-B-20-40-B	13.9	12.3	9.5	7.3	5.5	4.1	2.9	1.9
SSS-B-25-40-B	7.7	6.4	4.3	2.6	1.3	NR	NR	NR
SSS-B-30-40-B	3.2	2.1	NR	NR	NR	NR	NR	NR
SSS-B-16-50-B	25.0	25.0	25.0	25.0	25.0	21.4	18.2	15.5
SSS-B-18-50-B	25.0	25.0	25.0	24.4	20.4	17.0	14.2	11.9
SSS-B-20-50-B	25.0	25.0	24.4	19.9	16.3	13.4	11.0	8.9
SSS-B-25-50-B	21.8	19.3	15.0	11.5	8.8	6.5	4.7	3.1
SSS-B-30-50-B	13.7	11.7	8.2	5.5	3.3	1.5	NR	NR
SSS-B-25-50-C	21.8	19.3	15.0	11.5	8.8	6.5	4.7	3.1
SSS-B-30-50-C	13.7	11.7	8.2	5.5	3.3	1.5	NR	NR
SSS-B-20-60-B	25.0	25.0	25.0	21.9	17.8	14.5	11.7	9.4
SSS-B-25-60-B	23.8	20.9	16.1	12.3	9.2	6.6	4.5	2.8
SSS-B-30-60-B	14.6	12.3	8.4	5.3	2.8	0.8	NR	NR
SSS-B-35-60-B	7.5	5.6	2.4	NR	NR	NR	NR	NR
SSS-B-40-60-B	1.8	NR						

DATE:	LOCATION:
TYPE:	PROJECT:

CATALOG \#:

NOTES

Wind-speed Website disclaimer:
Current has no connection to the linked website and makes no representations as to its accuracy. While the information presented on this third-party website provides a useful starting point for analyzing wind conditions, Current has not verified any of the information on this third party website and assumes no responsibility or liability for its accuracy. The materia presented in the windspeed website should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. Current does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the windspeed report provided by this website. Users of the information from this third party website assume all liability arising from such use. Use of the output of these referenced websites do not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the windspeed report. http://windspeed.atcouncil.org

NOTES

- Allowable EPA, to determine max pole loading weight, multiply allowable EPA by 30 lbs .
- The tables for allowable pole EPA are based on the ASCE 7-05 Wind Map or the Florida Region Wind Map for the 2010 Florida Building Code. The Wind Maps are intended only as a general guide and cannot be used in conjunction with other maps. Always consult local authorities to determine maximum wind velocities, gusting and unique wind conditions for each specific application
- Allowable pole EPA for jobsite wind conditions must be equal to or greater than the total EPA for fixtures, arms, and accessories to be assembled to the pole. Responsibility lies with the specifier for correct pole selection. Installation of poles without luminaires or attachment of any unauthorized accessories to poles is discouraged and shall void the manufacturer's warranty
- Wind speeds and listed EPAs are for ground mounted installations. Poles mounted on structures (such as bridges and buildings) must consider vibration and coefficient of height factors beyond this general guide; Consult local and federal standards
- Wind Induced Vibration brought on by steady, unidirectional winds and other unpredictable aerodynamic forces are not included in wind velocity ratings.
- Extreme Wind Events like, Hurricanes, Typhoons, Cyclones, or Tornadoes may expose poles to flying debris, wind shear or other detrimental effects not included in wind velocity ratings

Due to our continued efforts to improve our products, product specifications are subject to change without notice.

DATE：	LOCATION：
TYPE：	PROJECT：

VIPER Area／Site

FEATURES

－Low profile LED area／site luminaire with a variety of IES distributions for lighting applications such as auto dealership，retail，commercial，and campus parking lots
－Featuring two different optical technologies，Strike and Micro Strike Optics， which provide the best distribution patterns for retrofit or new construction
－Rated for high vibration applications including bridges and overpasses．All sizes are rated for 1.5 G
－Control options including photo control，occupancy sensing，NX Lighting Controls ${ }^{\text {m＂}}$ ， wiSCAPE and 7－Pin with networked controls
－New customizable lumen output feature allows for the wattage and lumen output to be customized in the factory to meet whatever specification requirements may entail
－Field interchangeable mounting provides additional flexibility after the fixture has shipped

－（14）Is IP65

CONTROL TECHNOLOGY
Nば $\begin{gathered}\text { CONTROLS } \\ \text { wiSCAPE＂}\end{gathered}$

SPECIFICATIONS

CONSTRUCTION

－Die－cast housing with hidden vertical heat fins are optimal for heat dissipation while keeping a clean smooth outer surface
－Corrosion resistant，die－cast aluminum housing with 1000 hour powder coat paint finish
－External hardware is corrosion resistant

OPTICS

－Micro Strike Optics（160，320，480，or 720 LED counts）maximize uniformity in applications and come standard with mid－ power LEDs which evenly illuminate the entire luminous surface area to provide a low glare appearance．Catalog logic found on page 2
－Strike Optics（36， 72,108 ，or 162 LED counts） provide best in class distributions and maximum pole spacing in new applications with high powered LEDs．Strike optics are held in place with a polycarbonate bezel to mimic the appearance of the Micro Strike Optics so both solutions can be combined on the same application．Catalog logic found on page 3
－Both optics maximize target zone illumination with minimal losses at the house－side， reducing light trespass issues．Additional backlight control shields and house side shields can be added for further reduction of illumination behind the pole
－One－piece silicone gasket ensures a weatherproof seal
－Zero up－light at 0 degrees of tilt
－Field rotatable optics

INSTALLATION

－Mounting patterns for each arm can be found on page 11
－Optional universal mounting block for ease of installation during retrofit applications． Available as an option（ASQU）or accessory for square and round poles

INSTALLATION（CONTINUED）

－All mounting hardware included
－Knuckle arm fitter option available for 2－3／8＂ OD tenon
－For products with EPA less than 1 mounted to a pole greater that 20 ft ，a vibration damper is recommended

ELECTRICAL

－Universal 120－277 VAC or 347－480 VAC input voltage， $50 / 60 \mathrm{~Hz}$
－Ambient operating temperature $-40^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
－Drivers have greater than 90% power factor and less than 20\％THD
－LED drivers have output power over－voltage， over－current protection and short circuit protection with auto recovery
－Field replaceable surge protection device provides 20kA protection meeting ANSI／ IEEE C62．41．2 Category C High and Surge Location Category C3；Automatically takes fixture off－line for protection when device is compromised

CONTROLS

－Photo control，occupancy sensor programmable controls，and Zigbee wireless controls available for complete on／off and dimming control
－Please consult brand or sales representative when combining control and electrical options as some combinations may not operate as anticipated depending on your application
－7－pin ANSI C136．41－2013 photocontrol receptacle option available for twist lock photocontrols or wireless control modules （control accessories sold separately）
－0－10V Dimming Drivers are standard and dimming leads are extended out of the luminaire unless control options require connection to the dimming leads．Must specify if wiring leads are to be greater than the 6＂standard

CONTROLS（CONTINUED）

－NX Lighting Controls＂III available with in fixture wireless control module，features dimming and occupancy sensor
－wiSCAPE ${ }^{\circledR}$ available with in fixture wireless control module，features dimming and occupancy sensor．Also available in 7－pin configuration

CERTIFICATIONS

－DLC®（DesignLights Consortium Qualified）， with both Premium and Standard Qualified configurations．Please refer to the DLC website for specific product qualifications at http：／／www．designlights．org
－Listed to UL1598 and CSA C22．2\＃250．0－ 24 for wet locations and $40^{\circ} \mathrm{C}$ ambient temperatures
－1．5 G rated for ANSI C136．31 high vibration applications
－Fixture is IP65 rated
－Meets IDA recommendations using 3K CCT configuration at 0 degrees of tilt
－This product qualifies as a＂designated country construction material＂per FAR country construction material per FAR Materials under Trade Agreements effective 04／23／2020

WARRANTY

－ 5 year warranty

KEY DATA	
Lumen Range	$5,000-80,000$
Wattage Range	$36-600$
Efficacy Range（LPW）	$92-155$
Weight Ibs．（kg）	$13.7-30.9(6.2-13.9)$

Submitted by Swaney Lighting	
Sob Name:	
	SKYVIEW DRIVE APARTMENTS Designer \& Consultants: Swaney Application Design

Catalog Number:
VP-1-160L-135-3K7-4W-UNV-A-***
Notes:

Type:

VIPER Area/Site

DATE: LOCATION:
TYPE: PROJECT:

CATALOG \#:

MICROSTRIKE OPTICS - ORDERING GUIDE
Example: VP-2-320L-145-3K7-2-R-UNV-A3-BLT

- Items with a grey background can be done as a custom order. Contact brand representative for more
information
2 - Replace "-" with " 2 " for $2.5 "-3.4$ " OD pole, " " 3 " for 3.5 "-4.13" OD pole, "4" for 4.18 "-5.25" OD pole, " 5 "
for $5.5^{\prime \prime}-6.5^{\prime \prime}$ OD pole
3 - Networked Controls cannot be combined with other control options
- Not available with 2PF option
- Not available with Dual Driver option

BEACON
VIPER Area/Site
VIPER LUMINAIRE

DATE: LOCATION:
TYPE: \qquad PROJECT:

CATALOG \#:

DELIVERED LUMENS

For delivered lumens, please see Lumens Data PDF on www.Currentlighting.com
PROJECTED LUMEN MAINTENANCE

Ambient Temp.	0	25,000	${ }^{*}$ TM-21-11 36,000	50,000	100,000	Calculated L_{70} (Hours)
$25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$	1.00	0.97	0.96	0.95	0.91	408,000
$40^{\circ} \mathrm{C} / 104^{\circ} \mathrm{F}$	0.99	0.96	0.95	0.94	0.89	356,000

LUMINAIRE AMBIENT TEMPERATURE FACTOR (LATF)

Ambient Temperature		Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.03
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.01
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.00
$25^{\circ} \mathrm{C}$	$77^{\circ} \mathrm{F}$	1.00
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	0.99
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.98

Micro Strike Lumen Multiplier				
CCT	70 CRI	80 CRI	90 CRI	
2700 K	-	0.841	-	
3000 K	0.977	0.861	0.647	
3500 K	-	0.900	-	
4000 K	1	0.926	0.699	
5000 K	1	0.937	0.791	
Monochromatic Amber Multiplier				
Amber	0.250			

Strike Lumen Multiplier				
CCT	70 CRI	80 CRI	90 CRI	
2700 K	-	0.859	-	
3000 K	0.941	0.912	0.703	
3500 K	-	0.906	-	
4000 K	1	0.894	0.734	
5000 K	1	0.879	0.711	
Monochromatic Amber Multiplier				
Amber	255			

Catalog Number:
Type:
SKYVIEW DRIVE APARTMENTS
Designer \& Consultants: Swaney Application Design

VP-1-160L-135-3K7-4W-UNV-A-***
Notes:

898EACON

VIPER Area/Site

DATE:
TYPE:
| LOCATION:
| PROJECT:
CATALOG \#:

ELECTRICAL DATA: MICRO STRIKE

\# OF LEDS	160						
NOMINAL WATTAGE	35	50	75	100	115	135	160
SYSTEM POWER (W)	34.9	50.5	72.1	97.2	111.9	132.2	157.8
INPUT VOLTAGE (V)	CURRENT (Amps)						
120	0.29	0.42	0.63	0.83	0.96	1.13	1.33
208	0.17	0.24	0.36	0.48	0.55	0.65	0.77
240	0.15	0.21	0.31	0.42	0.48	0.56	0.67
277	0.13	0.18	0.27	0.36	0.42	0.49	0.58
347	0.10	0.14	0.22	0.29	0.33	0.39	0.46
480	0.07	0.10	0.16	0.21	0.24	0.28	0.33

\# OF LEDS	320						
NOMINAL WATTAGE	145	170	185	210	235	255	315
SYSTEM POWER (W)	150	166.8	185.7	216.2	240.9	261.5	312
INPUT VOLTAGE (V)	CURRENT (Amps)						
120	1.21	1.42	1.54	1.75	1.96	2.13	2.63
208	0.70	0.82	0.89	1.01	1.13	1.23	1.51
240	0.60	0.71	0.77	0.88	0.98	1.06	1.31
277	0.52	0.61	0.67	0.76	0.85	0.92	1.14
347	0.42	0.49	0.53	0.61	0.68	0.73	0.91
480	0.30	0.35	0.39	0.44	0.49	0.53	0.66

\# OF LEDS	480					
NOMINAL WATTAGE	285	320	340	390	425	470
SYSTEM POWER (W)	286.2	316.7	338.4	392.2	423.2	468
INPUT VOLTAGE (V)	CURRENT (Amps)					
120	2.38	2.67	2.83	3.25	3.54	3.92
208	1.37	1.54	1.63	1.88	2.04	2.26
240	1.19	1.33	1.42	1.63	1.77	1.96
277	1.03	1.16	1.23	1.41	1.53	1.70
347	0.82	0.92	0.98	1.12	1.22	1.35
480	0.59	0.67	0.71	0.81	0.89	0.98

\# OF LEDS	720				
NOMINAL WATTAGE	435	475	515	565	600
SYSTEM POWER (W)	429.3	475	519.1	565.2	599.9
INPUT VOLTAGE (V)	CURRENT (Amps)				
120	3.63	3.96	4.29	4.71	5.00
208	2.09	2.28	2.48	2.72	2.88
240	1.81	1.98	2.15	2.35	2.50
277	1.57	1.71	1.86	2.04	2.17
347	1.25	1.37	1.48	1.63	1.73
480	0.91	0.99	1.07	1.18	1.25

08
 BEACON

VIPER Area/Site
VIPER LUMINAIRE
ELECTRICAL DATA: STRIKE

\# OF LEDS	36					
NOMINAL WATTAGE	39	55	85	105	120	
SYSTEM POWER (W)	39.6	56.8	83.6	108.2	120.9	
INPUT VOLTAGE (V)	CURRENT (Amps)					
120	0.33	0.46	0.71	0.88	0.96	
208	0.19	0.26	0.41	0.50	0.55	
240	0.16	0.23	0.35	0.44	0.48	
277	0.14	0.20	0.31	0.38	0.42	
347	0.11	0.16	0.24	0.30	0.33	
480	0.08	0.11	0.18	0.22	0.24	

\# OF LEDS	72				
NOMINAL WATTAGE	115	145	180	210	240
SYSTEM POWER (W)	113.7	143.2	179.4	210.2	241.7
INPUT VOLTAGE (V)	CURRENT (Amps)				
120	1.00	1.51	1.50	1.75	1.79
208	0.58	0.70	0.87	1.01	1.03
240	0.43	0.60	0.75	0.88	0.90
277	0.35	0.52	0.65	0.76	0.78
347	0.25	0.42	0.52	0.61	0.62
480		0.38	0.44	0.45	

\# OF LEDS	108				
NOMINAL WATTAGE	215	250	280	325	365
SYSTEM POWER (W)	214.8	250.8	278.3	324.7	362.6
INPUT VOLTAGE (V)	CURRENT (Amps)				
120	2.00	2.08	2.33	3.04	2.67
208	1.15	1.20	1.35	1.75	1.54
240	1.00	1.04	1.17	1.52	1.33
277	0.87	0.90	1.01	1.32	1.16
347	0.69	0.72	0.81	1.05	0.92
480	0.50	0.52	0.58	0.76	0.67

\# OF LEDS		162				
NOMINAL WATTAGE	320	365	405	445	485	545
SYSTEM POWER (W)	322.1	362.6	403.6	445.1	487.1	543.9
INPUT VOLTAGE (V)		CURRENT (Amps)				
120	2.71	2.67	3.38	3.71	4.04	4.54
208	1.56	1.54	1.95	2.14	2.33	2.62
240	1.35	1.33	1.69	1.85	2.02	2.27
277	1.17	1.16	1.46	1.61	1.75	1.97
347	0.94	0.92	1.17	1.28	1.40	1.57
480	0.68	0.67	0.84	0.93	1.01	1.14

DATE: \quad LOCATION:

TYPE: \quad PROJECT:
CATALOG \#:

MICRO STRIKE PHOTOMETRY

The following diagrams represent the general distribution options offered for this product. For detailed information on specific product configurations, see website photometric test reports.

Type 2

Type 3

Type 5QW

Type 4 Wide

Type 4F

BEACON
VIPER Area/Site
VIPER LUMINAIRE

OPTIC STRIKE PHOTOMETRY

The following diagrams represent the general distribution options offered for this product. For detailed information on specific product configurations, see website photometric test reports.

Type FR - Front Row/Auto Optic

Type 4 Forward

Type 5R (rectangular)

Type 2

Type 4 Wide

Type 5W (round wide)

Type 3

Type 5QM

Type TC

Type Corner

Submitted by Swaney Lighting	
Sob Name: SKYVIEW DRIVE APARTMENTS Designer \& Consultants: Swaney Application Design	

Catalog Number:
VP-1-160L-135-3K7-4W-UNV-A-***
Type:

88 BEACON

VIPER Area/Site

DATE: | LOCATION:

TYPE: PROJECT:

DIMENSIONS

SIZE 3

	EPA				
	VP1 (Size 1)	VP2 (Size 2)	VP3 (Size 3)	VP4 (Size 4)	Config.
Single Fixture	0.454	0.555	0.655	0.698	θ_{1}
Two at 180	0.908	1.110	1.310	1.396	[1F-
Two at 90	0.583	0.711	0.857	0.948	$\underset{1}{9}$
Three at 90	1.037	1.266	1.512	1.646	易
Three at 120	0.943	1.155	1.392	1.680	$\frac{e^{2}}{0}$
Four at 90	1.166	1.422	1.714	1.896	最

Submitted by Swaney Lighting	
Sob Name:	
	Job SKYVIEW DRIVE APARTMENTS Designer \& Consultants: Swaney Application Design

Catalog Number:

BEACON

VIPER Area/Site

VIPER LUMINAIRE

DATE:	LOCATION:
TYPE:	PROJECT:

CATALOG \#:

MOUNTING

A-STRAIGHT ARM MOUNT

Fixture ships with integral arm for ease of installation. Compatible with Current Outdoor B3 drill pattern. For round poles add applicable suffix (2/3/4/5)

ASQU-UNIVERSAL ARM MOUNT

Universal mounting block for ease of installation. Compatible with drill patterns from 2.5 " to $4.5^{\prime \prime}$ and Current drill pattern S 2 . For round poles add applicable suffix ($2 / 3 / 4 / 5$)

AAU-ADJUSTABLE ARM FOR POLE MOUNTING

Rotatable arm mounts directly to pole. Compatible with drill patterns from 2.5 " to $4.5^{\prime \prime}$ and Current drill pattern S2. For round poles add applicable suffix (2/3/4/5). Rotatable in 15° aiming angle increments. Micro Strike configurations have a 45° aiming limitation.
Strike configurations have a 30° aiming limitation.

ADU-DECORATIVE UPSWEPT ARM
Upswept Arm compatible with drill patterns from $2.5^{\prime \prime}$ to 4.5 ". For round poles add applicable suffix $(2 / 3 / 4 / 5)$.

MAF-MAST ARM FITTER

Fits 2-3/8" OD horizontal tenons.

K-KNUCKLE

Knuckle mount 15° aiming angle increments for precise aiming and control, fits 2-3/8" tenons or pipes. Micro Strike configurations have a 45° aiming limitation. Strike configurations have a 30° aiming limitation.

T-TRUNNION

Trunnion for surface and crossarm mounting using (1) $3 / 4^{\prime \prime}$ or (2) $1 / 2^{\prime \prime}$ size through bolts. Micro Strike configurations have a 45° aiming limitation. Strike configurations have a 30° aiming limitation.

WM-WALL MOUNT
Compatible with universal arm mount, adjustable arm mount, and decorative arm mount. The WA option uses the same wall bracket but replaces the decorative arm with an adjustable arm.

88 BEACON
 VIPER Area/Site

DATE: LOCATION:

TYPE: PROJECT:

ADDITIONAL INFORMATION (CONTINUED)

HOUSE SIDE SHIELD FIELD INSTALL ACCESSORIES

DATE: \qquad LOCATION:

TYPE: PROJECT:

ADDITIONAL INFORMATION (CONTINUED)

 PROGRAMMED CONTROLSADD-AutoDim Timer Based Options

- Light delay options from 1-9 hours after the light is turned on to dim the light by 10-100\%. To return the luminaire to its original light level there are dim return options from 1-9 hours after the light has been dimmed previously.

EX: ADD-6-5-R6

ADD Control Options	Configurations Choices	Example Choice Picked
Auto-Dim Options	$1-9$ Hours	6 - Delay 6 hours
Auto-Dim Brightness	$10-100 \%$ Brightness	5 - Dim to 50% brightness
Auto-Dim Return	Delay 0-9 Hours	R6 - Return to full output after 6 hours

ADT-AutoDim Time of Day Based Option

- Light delay options from 1AM-9PM after the light is turned on to dim the light by $10-100 \%$. To return the luminaire to its original light level there are dim return options from 1AM-9PM after the light has been dimmed previously.

EX: ADT-6-5-R6

ADD Control Options	Configurations Choices	Example Choice Picked
Auto-Dim Options	$12-3$ AM and 6-11 PM	6 - Dim at 6PM
Auto-Dim Brightness	$10-100 \%$ Brightness	5 - Dim to 50%
Auto-Dim Return	$12-6$ AM and 9-11P	R6 - Return to full output at 6AM

This page intentionally left blank for printing purposes

BEACON
DATE: LOCATION: TYPE: PROJECT:

SSS-B Series Poles

CATALOG \#:

SQUARE STRAIGHT STEEL

APPLICATIONS

- Lighting installations for side and top mounting of luminaires with effective projected area (EPA) not exceeding maximum allowable loading of the specified pole in its installed geographic location

CONSTRUCTION

- SHAFT: One-piece straight steel with square cross section, flat sides and minimum $0.23^{\prime \prime}$ radius on all corners; Minimum yield of 46,000 psi (ASTM-A500, Grade B); Longitudinal weld seam to appear flush with shaft side wall; Steel base plate with axial bolt circle slots welded flush to pole shaft having minimum yield of 36,000 psi (ASTM A36)
- BASE COVER: Two-piece square aluminum base cover included standard
- POLE CAP: Pole shaft supplied with removable cover when applicable; Tenon and post-top configurations also available
- HAND HOLE: Rectangular 3×5 steel hand hole frame ($2.38^{\prime \prime} \times 4.38^{\prime \prime}$ opening); Mounting provisions for grounding lug located behind gasketed cover
- ANCHOR BOLTS: Four galvanized anchor bolts provided per pole with minimum yield of 55,000 psi (ASTM F1554). Galvanized hardware with two washers and two nuts per bolt for leveling
Anchor bolt part numbers: $3 / 4 \times 30 \times 3-$ TAB-30-M38

$$
1 \times 36 \times 4-\text { TAB-36-M38 }
$$

FINISH

- Durable thermoset polyester powder coat paint finish with nominal 3.0 mil thickness
- Powder paint prime applied over "white metal" steel substrate cleaned via mechanical shot blast method
- Decorative finish coat available in multiple standard colors; Custom colors available; RAL number preferable

WAREHOUSE ‘STOCKED’ POLES:

- SSSH20-40A-4-HV-DB-RDC, SSSH25-40A-4-HV-DB-RDC and SSSH30-50B-4-HV-DB-RDC
- The HV designation in the above catalog numbers is a combination drill pattern of the Current S 2 pattern and the Beacon B3/B4 Viper pattern (rectangular arm mounting)

83BEACON

SSS-B Series Poles

DATE:

TYPE: |PROJECT:

SQUARE STRAIGHT STEEL

ORDERING INFORMATION Cont.

Catalog Number	Height		Nominal Shaft Dimensions	Wall Thickness	Bolt Circle (suggested)	Bolt Circle (range)	Bolt Square (range)	Base Plate Square	Anchor bolt size	Bolt Projection	Pole weight
	Feet	Meters									
SSS-B-10-40-A-XX-XX	10	3.0	4" square	$0.125^{\prime \prime}$	$9 "$	8"-10"	5.66" - 7.07"	$9 "$	$3 / 4$ " $\times 30$ " $\times 3$ "	3.5	77
SSS-B-12-40-A-XX-XX	12	3.7	4" square	$0.125^{\prime \prime}$	9"	8"-10"	$5.666^{\prime \prime}-7.07{ }^{\prime \prime}$	9"	$3 / 4^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	90
SSS-B-14-40-A-XX-XX	14	4.3	4" square	$0.125^{\prime \prime}$	9 "	8"-10"	5.66 " - 7.07"	9 "	$3 / 4^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	103
SSS-B-16-40-A-XX-XX	16	4.9	4" square	$0.125^{\prime \prime}$	9 "	8"-10"	$5.666^{\prime \prime}-7.07$ "	$9 "$	$3 / 4^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	116
SSS-B-18-40-A-XX-XX	18	5.5	4" square	$0.125^{\prime \prime}$	$9 "$	8"-10"	$5.666^{\prime \prime}-7.07^{\prime \prime}$	$9 "$	$3 / 4^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	129
SSS-B-20-40-A-XX-XX	20	6.1	4" square	$0.125^{\prime \prime}$	9 "	8"-10"	$5.666^{\prime \prime}-7.07^{\prime \prime}$	$9 "$	$3 / 4^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	142
SSS-B-25-40-A-XX-XX	25	7.6	4" square	0.125"	$9{ }^{\prime \prime}$	8" - 10"	5.66" - 7.07"	$9 "$	$3 / 4^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	175
SSS-B-14-40-B-XX-XX	14	4.3	4" square	.188"	11 "	10" - $12^{\prime \prime}$	7.07" - 8.48"	10.50"	$3 / 4^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	152
SSS-B-16-40-B-XX-XX	16	4.9	4" square	.188"	11 "	10" - 12"	7.07" - 8.48"	10.50"	$3 / 4{ }^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	171
SSS-B-18-40-B-XX-XX	18	5.5	4" square	.188"	11"	$10^{\prime \prime}-12{ }^{\prime \prime}$	$7.07{ }^{\prime \prime}$ - $8.48{ }^{\prime \prime}$	10.50"	$3 / 4^{\prime \prime} \times 30^{\prime \prime} \times 3^{\prime \prime}$	3.5	190
SSS-B-20-40-B-XX-XX	20	6.1	4" square	.188"	11"	$10^{\prime \prime}-12^{\prime \prime}$	7.07" - 8.48"	10.50"	$3 / 4^{\prime \prime} \times 30$ " $\times 3^{\prime \prime}$	3.5	209
SSS-B-25-40-B-XX-XX	25	7.6	4" square	.188"	$11^{\prime \prime}$	$10^{\prime \prime}-12^{\prime \prime}$	7.07" - 8.48"	10.50"	$3 / 4^{\prime \prime} \times 30$ " $\times 3^{\prime \prime}$	3.5	257
SSS-B-30-40-B-XX-XX	30	9.1	4" square	.188"	11 "	$10^{\prime \prime}-12^{\prime \prime}$	7.07" - 8.48"	10.50"	$3 / 4^{\prime \prime} \times 30$ " $3^{\prime \prime}$	3.5	304
SSS-B-16-50-B-XX-XX	16	4.9	5" square	.188"	11"	10.25" - 13.25 "	7.25 " - 9.37"	11.50"	1" $\times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	219
SSS-B-18-50-B-XX-XX	18	5.5	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37 "	11.50 "	$1^{\prime \prime} \times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	243
SSS-B-20-50-B-XX-XX	20	6.1	5" square	.188"	11"	10.25" - 13.25"	$7.25{ }^{\prime \prime}-9.37^{\prime \prime}$	11.50 "	$1^{\prime \prime} \times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	267
SSS-B-25-50-B-XX-XX	25	7.6	5" square	.188"	11"	10.25" - 13.25"	$7.25{ }^{\prime \prime}-9.37 \prime$	11.50"	$1^{\prime \prime} \times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	327
SSS-B-30-50-B-XX-XX	30	9.1	5" square	.188"	$11^{\prime \prime}$	10.25" - 13.25 "	7.25 " - 9.37"	11.50"	$1^{\prime \prime} \times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	387
SSS-B-25-50-C-XX-XX	25	7.6	5" square	.25"	11"	10.25" - 13.25 "	7.25" - $9.37^{\prime \prime}$	11.50 "	$1^{\prime \prime} \times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	427
SSS-B-30-50-C-XX-XX	30	9.1	5" square	.25"	$11^{\prime \prime}$	10.25" - 13.25"	7.25 " - 9.37 "	11.50"	$1^{\prime \prime} \times 36^{\prime \prime} \times 4^{\prime \prime}$	4.5	507
SSS-B-20-60-B-XX-XX	20	6.1	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25 "	1" $\times 36$ " $\times 6$ "	4.5	329
SSS-B-25-60-B-XX-XX	25	7.6	6" square	.188"	$12^{\prime \prime}$	11.00 " - 13.25"	7.81" - 9.37"	$12.25^{\prime \prime}$	1" $\times 36$ " $\times 6$ "	4.5	404
SSS-B-30-60-B-XX-XX	30	9.1	6 " square	.188"	12 "	$11.00^{\prime \prime}$ - $13.25^{\prime \prime}$	7.81" - 9.37"	12.25 "	1" $\times 36$ " $\times 6$ "	4.5	479
SSS-B-35-60-B-XX-XX	35	10.7	6 " square	.188"	12 "	11.00" - 13.25"	7.81" - 9.37"	12.25 "	1" $\times 36^{\prime \prime} \times 6^{\prime \prime}$	4.5	554
SSS-B-40-60-B-XX-XX	40	12.2	6 " square	.188"	$12^{\prime \prime}$	11.00" - 13.25"	7.81" - 9.37"	12.25"	$1{ }^{\prime \prime} \times 36^{\prime \prime} \times 6^{\prime \prime}$	4.5	629

NOTE Factory supplied template must be used when setting anchor bolts. Beacon Products will deny any claim for incorrect anchorage placement resulting from failure to use factory supplied template and anchor bolts.

For more information about pole vibration and vibration dampers, please consult our website.
Due to our continued efforts to improve our products, product specifications are subject to change without notice.

Catalog Number:

(82
 BEACON

SSS-B Series Poles

square straight steel
DATE:
LOCATION:

TYPE:
CATALOG \#:

ASCE7-05 WIND MAP

ASCE 7-05 wind map EPA Load Rating - 3 second gust wind speeds (Use for all locations except Florida)										
Catalog Number	85	90	100	105	110	120	130	140	145	150
SSS-B-10-40-A	25.0	25.0	25.0	22.8	20.6	17.0	14.2	11.9	11.0	10.1
SSS-B-12-40-A	25.0	25.0	20.0	18.0	16.1	13.2	10.8	8.9	8.1	7.4
SSS-B-14-40-A	23.1	20.4	16.1	14.3	12.8	10.2	8.2	6.6	5.9	5.3
SSS-B-16-40-A	19.0	16.7	13.0	11.5	10.1	7.9	6.2	4.7	4.1	3.6
SSS-B-18-40-A	15.6	13.6	10.0	9.0	7.8	5.9	4.4	3.1	2.6	2.1
SSS-B-20-40-A	12.7	10.9	7.9	6.9	5.9	4.2	2.8	1.7	1.3	0.9
SSS-B-25-40-A	7.3	5.9	3.8	2.9	2.1	0.8	NR	NR	NR	NR
SSS-B-14-40-B	25.0	25.0	23.3	20.8	18.6	15.1	12.3	10.2	9.2	8.4
SSS-B-16-40-B	25.0	24.9	19.4	17.3	15.4	12.3	9.9	8.0	7.2	6.4
SSS-B-18-40-B	24.0	20.8	16.1	14.2	12.5	9.8	7.7	6.1	5.3	4.7
SSS-B-20-40-B	20.2	17.5	13.2	11.6	10.1	7.7	5.9	4.4	3.8	3.2
SSS-B-25-40-B	12.8	11.0	7.9	6.7	5.5	3.7	2.3	1.2	0.7	NR
SSS-B-30-40-B	8.0	6.6	4.1	3.1	2.2	0.8	NR	NR	NR	NR
SSS-B-16-50-B	25.0	25.0	25.0	25.0	24.8	20.1	16.5	13.6	12.3	11.2
SSS-B-18-50-B	25.0	25.0	25.0	22.9	20.4	16.4	13.2	10.7	9.6	8.6
SSS-B-20-50-B	25.0	25.0	21.3	18.9	16.7	13.2	10.4	8.1	7.2	6.3
SSS-B-25-50-B	20.7	17.8	13.3	11.5	9.8	7.2	5.0	3.3	2.6	1.9
SSS-B-30-50-B	13.5	11.3	7.7	6.2	4.9	2.8	1.1	NR	NR	NR
SSS-B-25-50-C	25.0	25.0	19.4	17.1	15.1	11.7	9.0	6.9	6.0	5.1
SSS-B-30-50-C	20.1	17.3	12.7	10.9	9.3	6.6	4.5	2.8	2.1	1.4
SSS-B-20-60-B	25.0	25.0	25.0	25.0	25.0	20.2	16.1	12.9	11.5	10.3
SSS-B-25-60-B	25.0	25.0	20.6	18.0	15.6	11.8	8.7	6.2	5.2	4.2
SSS-B-30-60-B	21.4	18.1	12.9	10.7	8.8	5.7	3.3	1.3	NR	NR
SSS-B-35-60-B	14.0	11.3	6.9	5.2	3.6	1.0	NR	NR	NR	NR
SSS-B-40-60-B	8.1	5.8	2.2	nr						

Florida Building Code 2017 EPA Load Rating - 3 second gust wind speeds (Use for Florida only)								
Catalog Number	115	120	130	140	150	160	170	180
SSS-B-10-40-A	25.0	25.0	25.0	25.0	21.4	18.4	15.9	13.9
SSS-B-12-40-A	25.0	25.0	23.6	19.8	16.7	14.2	12.1	10.4
SSS-B-14-40-A	25.0	23.1	19.0	15.7	13.1	10.9	9.1	7.6
SSS-B-16-40-A	20.8	18.7	15.2	12.3	10.1	8.2	6.7	5.4
SSS-B-18-40-A	16.8	15.0	11.9	9.4	7.5	5.9	4.5	3.4
SSS-B-20-40-A	13.6	11.9	9.2	7.1	5.3	3.9	2.7	1.7
SSS-B-25-40-A	7.4	6.2	4.1	2.5	1.1	NR	NR	NR
SSS-B-14-40-B	25.0	23.6	19.4	16.1	13.4	11.2	9.4	7.8
SSS-B-16-40-B	21.4	19.2	15.6	12.7	10.4	8.5	6.9	5.6
SSS-B-18-40-B	17.2	15.4	12.2	9.7	7.7	6.1	4.7	3.6
SSS-B-20-40-B	13.9	12.3	9.5	7.3	5.5	4.1	2.9	1.9
SSS-B-25-40-B	7.7	6.4	4.3	2.6	1.3	NR	NR	NR
SSS-B-30-40-B	3.2	2.1	NR	NR	NR	NR	NR	NR
SSS-B-16-50-B	25.0	25.0	25.0	25.0	25.0	21.4	18.2	15.5
SSS-B-18-50-B	25.0	25.0	25.0	24.4	20.4	17.0	14.2	11.9
SSS-B-20-50-B	25.0	25.0	24.4	19.9	16.3	13.4	11.0	8.9
SSS-B-25-50-B	21.8	19.3	15.0	11.5	8.8	6.5	4.7	3.1
SSS-B-30-50-B	13.7	11.7	8.2	5.5	3.3	1.5	NR	NR
SSS-B-25-50-C	21.8	19.3	15.0	11.5	8.8	6.5	4.7	3.1
SSS-B-30-50-C	13.7	11.7	8.2	5.5	3.3	1.5	NR	NR
SSS-B-20-60-B	25.0	25.0	25.0	21.9	17.8	14.5	11.7	9.4
SSS-B-25-60-B	23.8	20.9	16.1	12.3	9.2	6.6	4.5	2.8
SSS-B-30-60-B	14.6	12.3	8.4	5.3	2.8	0.8	NR	NR
SSS-B-35-60-B	7.5	5.6	2.4	NR	NR	NR	NR	NR
SSS-B-40-60-B	1.8	NR						

DATE:	LOCATION:
TYPE:	PROJECT:

CATALOG \#:

NOTES

Wind-speed Website disclaimer:

Current has no connection to the linked website and makes no representations as to its accuracy. While the information presented on this third-party website provides a useful starting point for analyzing wind conditions, Current has not verified any of the information on this third party website and assumes no responsibility or liability for its accuracy. The material presented in the windspeed website should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. Current does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the windspeed report provided by this website. Users of the information from this third party website assume all liability arising from such use. Use of the output of these referenced websites do not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the windspeed report. http://windspeed.atcouncil.org

NOTES

- Allowable EPA, to determine max pole loading weight, multiply allowable EPA by 30 lbs .
- The tables for allowable pole EPA are based on the ASCE $7-05$ Wind Map or the Florida Region Wind Map for the 2010 Florida Building Code. The Wind Maps are intended only as a general guide and cannot be used in conjunction with other maps. Always consult local authorities to determine maximum wind velocities, gusting and unique wind conditions for each specific application
- Allowable pole EPA for jobsite wind conditions must be equal to or greater than the total EPA for fixtures, arms, and accessories to be assembled to the pole. Responsibility lies with the specifier for correct pole selection. Installation of poles without luminaires or attachment of any unauthorized accessories to poles is discouraged and shall void the manufacturer's warranty
- Wind speeds and listed EPAs are for ground mounted installations. Poles mounted on structures (such as bridges and buildings) must consider vibration and coefficient of height factors beyond this general guide; Consult local and federal standards
- Wind Induced Vibration brought on by steady, unidirectional winds and other unpredictable aerodynamic forces are not included in wind velocity ratings.
- Extreme Wind Events like, Hurricanes, Typhoons, Cyclones, or Tornadoes may expose poles to flying debris, wind shear or other detrimental effects not included in wind velocity ratings

Due to our continued efforts to improve our products, product specifications are subject to change without notice.

Section J

Architectural Design/Narrative

October 24, 2022

Carla Nixon
Town Planner
Town of Cumberland Maine
290 Tuttle Road
Cumberland, ME 04021

Re: White Rock Apartments

Design Narrative

Dear Carla,
We are pleased to present the White Rock Apartments design to the Town of Cumberland. The following narrative describes how the proposed design responds to the Route One Design Standards in section 400 of the Zoning Ordinance.

Section 400

Building Design

All structures shall be designed in the traditional New England style of architecture whenever feasible.

Response: The proposed structure has gable roof forms with projecting bays which are traditional New England Architectural forms.

Facades

Unbroken facades in excess of 80 feet are overwhelming whether they are visible from Route 1, other roadways or pedestrian areas, or when they abut residential areas. Breaking up the plane of the wall is required to reduce this sense of overwhelming scale. Where the plane of the wall is broken, the offset shall be proportionate to the building's height and length. A general rule of thumb for such projections or recesses is that their depth shall be at least 3% of the façade's length, and they shall extend for at least 20% of the façade's length.

Response: The building design has projecting bays and gables roof forms to break up the facade lengths.

Entrances

Large structures shall have clearly defined and highly visible entrances emphasized through such devices as significant variations in rooflines or cornice lines, changes in materials, porticos, landscape treatments, distinctive lighting or other architectural treatments.

Response: The Main Entry is defined by an entry porch with columns and a change in siding material from the building above.

Materials

Traditional siding materials common to New England are brick, painted clapboard and either painted or unpainted shingles. Contemporary materials that have the same visual characteristics as traditional materials (e.g., cementitious clapboards or vinyl siding) are acceptable if attention is paid to detailing (e.g., corners, trim at openings, changes in material).

Response: The building design includes clapboard siding, shingle siding forms and asphalt roof shingles which are very common materials in New England.

Details

Architectural details, such as colonnades, pilasters, gable ends, awnings, display windows and appropriately positioned light fixtures, shall be used to reduce the scale and uniformity of larger buildings.

Response: The building design includes eave overhangs, columns and trim that is in scale with the facades of the building, and help break down the scale of those facades.

Windows

Windows shall reflect a classic New England style by featuring divided lights (window panes) and detailing trim around them.

Response: The building design includes double hung windows with divided lites and window trim

Awnings and Canopies

Awnings and canopies can enhance the appearance and function of a building by providing shade, shelter, shadow patterns, and visual interest. Where awnings are used, they shall complement the overall design and color of the building.

Response: The building design includes entry canopies that compliment the overall building design.

Sincerely,

Ryan Senatore, ala leed AP
Principal

Section K

Traffic Report

Traffic Assessment

Date: October 24, 2022
To: Will Savage, P.E., President, Acorn Engineering, Inc. Travis Letellier, P.E., Project Manager, Acorn Engineering, Inc.
From: Jacob Sirois William J. Bray, P.E.
Engineer 1
Barton \& Loguidice, LLC.
Senior Managing Traffic Engineer
Barton \& Loguidice, LLC.
\section*{Re: White Rock Terrace Housing Development

Sky View Drive, Cumberland, Maine}

Introduction

The Szanton Company is proposing development of a 55 -unit senior adult housing development on Sky View Drive in the Town of Cumberland (Refer to Image 1 below for the location of the proposed development site). The site will be accessed via a single full access driveway entrance located on the western side of Sky View Drive. The driveway entrance provides direct access to a parking lot which sits adjacent to the proposed residential building.

The purpose of this traffic assessment is to evaluate and measure the level of impact on traffic operations and safety resulting with the development of the proposed project. Site generated trip projections are provided for "key" peak hour time periods throughout a typical week; and, road safety conditions are assessed based upon a review of MaineDOT's latest three-year road safety data for the immediate section of US Route 1.

Figure 1 Proposed Development Site

Site Trip Generation

Daily and peak hour trip generation was determined for the proposed development based upon trip tables presented in the $11^{\text {th }}$ edition of the Institute of Transportation Engineers (ITE) "TRIP GENERATION MANUAL". The ITE publication provides numerous land use categories and the average volume of trips generated by each category.

Site trip estimates for the White Rock Terrace housing development are based upon LUC \#251 - Senior Adult Housing - Single Family; which is described in the ITE publication as: a development with a specific age restriction for its residents, typically a minimum of 55 years of age for at least one resident of the household. The dwelling units may either be detached or attached. Calculation of the total number of trips generated per each corresponding time period are summarized below in Table 1.

Table 1 ITE Trip Generation Calculations								
Land Use	Senior Adult Housing-Single Family - LUC 251							
Time Period	Dwelling Units	Trip Generation Rate Trips/Dwelling Units	Trips Generated				Enter	Exit
Weekday	55	4.31	237	50\%	1	50\%	119	118
AM Weekday Peak Hour (Street)	55	0.24	13	33\%	1	67\%	4	9
PM Weekday Peak Hour (Street)	55	0.30	17	61\%	1	39\%	10	7
AM Weekday Peak Hour (Generator)	55	0.34	19	43\%	1	57\%	8	11
PM Weekday Peak Hour (Generator)	55	0.39	21	56\%	1	44\%	12	9

As presented in the preceding table, the proposed White Rock Terrace senior adult development will be a low trip generator; generating 13 trips during the morning peak hour of the street and 17 trips during the evening peak hour of the street. The trips generated during the peak hours of the site will be slightly higher, with the development producing 19 trips in the morning and 21 trips in the evening. During a typical weekday, the site is expected to produce approximately 237 daily trips.

Existing Road Safety Conditions

The Maine Department of Transportation's (MaineDOT) Accident Records Section provided the latest three-year (2019 through 2021) crash data for the segment of Route 1 between the Falmouth Town Line and the intersection at Route 1, Casco Bay Drive and Granite Ridge Road for a distance of approximately 0.47 miles. Their report is presented as follows:

2019-2021 Traffic Accident Summary
Route 1 between Falmouth Town Line and Casco Bay Drive/Granite Ridge Road

Location	$\underline{\text { Total }}$ Crashes	Critical Rate Factor	
1.	Falmouth Town Line	0	0
2.	Route 1 @ Casco Bay Drive and Granite Ridge Road	1	0.32
3.Route 1 btw. Falmouth Town Line and Casco Bay Drive and Granite Ridge Road	3	0.20	

The MaineDOT considers any roadway intersection or segment a high crash location if both of the following criteria are met:

- 8 or more accidents in a three-year period
- A Critical Rate Factor greater than 1.00

As the data presented in the chart shows, there are no identified high crash locations within the defined study area.

Summary

1. The proposed housing development is estimated to generate a total of 237 trips during a typical weekday. During the peak hours of the street, the development is projected to generate 13 trips in the morning and 17 trips in the evening peak hours. The peak hours of the site generate slightly higher volumes of site trips with a total of 19 trips in the morning and 21 trips in the evening peak hours. Overall, the project will be a low volume trip generator and well below the minimum MaineDOT threshold of 100 new peak hour trips ends that require a Traffic Movement Permit.
2. A review of MaineDOT crash data available for the latest 3 -year period (2019-2021) for the section of Route 1 between the Falmouth Town Line and the intersection of Route 1 at Casco Bay Drive and Granite Ridge Road was performed. Our review indicated that there are no high crash locations within the defined study area. 3 .

William J. Bray, PE, Date: 10/24/2022

APPENDIX

Appendix A - Maine DOT Crash Data

Maine Department Of Transportation - Office of Safety, Crash Records Section
REPORT DESCRIPTION

REPORT SELECTIONS
 \square Crash Summary I

REPORT PARAMETERS
Year 2019, Start Month 1 through Year 2021 End Month: 12

[^1]Maine Department Of Transportation - Office of Safety, Crash Records Section Crash Summary I Nodes

Nodes														
Node	Route - MP	Node Description	U/R	Total Crashes	Injury Crashes				Percent Annual MPD InjuryEnt-Veh				Critical Rate	CRF
15810	0001X-56.89	TL Cumberland Falmouth	1	0	0	0	0	0	0	0.0	3.162	$\begin{gathered} 0.00 \\ \text { tewide Crash Rate: } \end{gathered}$	$\text { te: } \quad 0.36$	0.00
70824	0001X-57.36	Int of CASCO BAY DR ROUTE 1	1	1	0	0	0	0	1	0.0	$\underset{\text { State }}{2.845}$	$\begin{gathered} 0.12 \\ \text { tewide Crash Rate: } \end{gathered}$	$\text { te: } \quad 0.12$	0.00
Study Y	ears: 3.00			1	0	0	0	0	1	0.0	6.007	0.06	0.30	0.18

Start	End	Element	Offset	Route - MP	Section		Total			C			Percent	Annual	Crash Rate	Critical	CRF
Node	Node		Begin - End		Length		Crashes	K	A	B	C	PD	Injury	HMVM		Rate	
$\begin{array}{r} 15810 \\ \text { TL Cum } \end{array}$	$\begin{array}{r} 70824 \\ \text { erland } \mathrm{Fa} \end{array}$	$\begin{aligned} & 3937606 \\ & \text { mouth } \end{aligned}$	0-0.47	0001X - 56.89 US 1	0.47	1	3	0	0	0	0	3	0.0	0.01486	Statewide Crash Rate: 184.86		0.00
Study Years: 3.00				Section Totals:	0.47		3	0	0	0	0	3	0.0	0.01486	67.29	339.52	0.20
				Grand Totals:	0.47		4	0	0	0	0	4	0.0	0.01486	89.72	383.34	0.23

Totals: 3000000
Maine Department Of Transportation - Office of Safety, Crash Records Section

[^2]Total Unit Type
2 23-Bicyclist
24-Witness
25-Other

$\begin{array}{ll}0 & \text { 25-Other } \\ 0 & 26 \text {-Construction } \\ 0 & 27 \text {-Farm Vehicle } \\ 0 & \text { Total } \\ 0 & \end{array}$
Passenger Car Unit Type
1-Passenger Car
2-(Sport) Utility Vehicle
3-Passenger Van
4-Cargo Van (10K Ibs or Less) 5-Pickup
6-Motor Home 7-School Bus 8 -Transit Bus 9-Motor Coach 10-Other Bus 11-Motorcycle
12-Moped
13-Low Speed Vehicle
14-Autocycle
15-Experimental
16-Other Light Trucks (10,000 lbs or Less)
17-Medium/Heavy Trucks (More than 10,000
lbs)
18-ATV - (4 wheel) 20-ATV - (2 wheel)
21-Snowmobile
22-Pedestrian

Crashes by Driver Action at Time of Crash								Crashes by Apparent Physical Condition And Driver									
Driver Action at Time of Crash	Dr 1	Dr 2	Dr 3	Dr 4	Dr 5	Other	Total	Apparen Conditio	hysical		Dr 1	Dr 2	Dr 3	Dr 4	Dr 5	Other	Total
								Apparently	rmal		4	1	0	0	0	0	5
No Contributing Action	3	1	0	0	0	0	4	Physically	aired		0	0	0	0	0	0	0
Ran Off Roadway	0	0	0	0	0	0	0	Emotional Disturbed	ressed, Angry,		0	0	0	0	0	0	0
Failed to Yield Right-of-Way	0	0	0	0	0	0	0	III (Sick)			0	0	0	0	0	0	0
Ran Red Light	0	0	0	0	0	0	0	Asleep or	gued		0	0	0	0	0	0	0
Ran Stop Sign	0	0	0	0	0	0	0	Under the Medication	ence of rugs/Alcohol		0	0	0	0	0	0	0
Disregarded Other Traffic Sign	0	0	0	0	0	0	0	Other			0	0	0	0	0	0	0
Disregarded Other Road Markings	0	0	0	0	0	0	0	Total			4	1	0	0	0	0	5
Exceeded Posted Speed Limit	0	0	0	0	0	0	0										
Drove Too Fast For Conditions	0	0	0	0	0	0	0										
Improper Turn	0	0	0	0	0	0	0	Driver Age by Unit Type									
Improper Backing	0	0	0	0	0	0	0	Age	Driver B	Bicycle	Snow	Mobile	Pedest		ATV		Total
Improper Passing	0	0	0	0	0	0	0	09-Under	0	0	0		0		0		0
Wrong Way	0	0	0	0	0	0	0	10-14	0	0	0		0		0		0
Followed Too Closely	0	0	0	0	0	0	0	15-19	0	0	0		0		0		0
Failed to Keep in Proper Lane	0	0	0	0	0	0	0	20-24	1	0	0		0		0		1
Operated Motor Vehicle in Erratic, Reckless, Careless, Negligent or Aggressive Manner	0	0	0	0	0	0	0	25-29	0	0	0		0		0		0
								30-39	0	0	0		0		0		0
								40-49	1	0	0		0		0		1
Swerved or Avoided Due to Wind, Slippery Surface, Motor Vehicle, Object, Non-Motorist in Roadway	0	0	0	0	0	0	0	50-59	2	0	0		0		0		2
								60-69	1	0	0		0		0		1
Over-Correcting/Over-Steering	0	0	0	0	0	0	0	70-79	0	0	0		0		0		0
Other Contributing Action	0	0	0	0	0	0	0	80-Over	0	0	0		0		0		0
Unknown	1	0	0	0	0	0	1	Unknown	0	0	0		0		0		0
								Total	5	0	0		0		0		5

Maine Department Of Transportation - Office of Safety, Crash Records Section

Maine Department Of Transportation - Office of Safety, Crash Records Section
Crash Summary II - Characteristics

$\stackrel{\text { II }}{\square} 0-000$ Traffic
Circle-
Roundabout
000

Railroad
Crossing
0 0 0 \circ -\circ \circ 0 \circ \circ $\begin{array}{lllllllll}\stackrel{L}{0} & & & & & & \\ 0.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 \\ 0.0 & 0 & & & & & & & \\ 0.0\end{array}$
Maine Department Of Transportation - Office of Safety, Crash Records Section

Weather Light	Dry	Ice/Frost	Mud, Dirt, Gravel	Oil	Other	Sand	Slush	Snow	Unknown	Water (Standing, Moving)	Wet	Total
Blowing Sand, Soil, Dirt												
Dark - Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Not Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Unknown Lighting	0	0	0	0	0	0	0	0	0	0	0	0
Dawn	0	0	0	0	0	0	0	0	0	0	0	0
Daylight	0	0	0	0	0	0	0	0	0	0	0	0
Dusk	0	0	0	0	0	0	0	0	0	0	0	0
Unknown	0	0	0	0	0	0	0	0	0	0	0	0
Blowing Snow												
Dark - Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Not Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Unknown Lighting	0	0	0	0	0	0	0	0	0	0	0	0
Dawn	0	0	0	0	0	0	0	0	0	0	0	0
Daylight	0	0	0	0	0	0	0	0	0	0	0	0
Dusk	0	0	0	0	0	0	0	0	0	0	0	0
Unknown	0	0	0	0	0	0	0	0	0	0	0	0
Clear												
Dark - Lighted	1	0	0	0	0	0	0	0	0	0	0	1
Dark - Not Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Unknown Lighting	0	0	0	0	0	0	0	0	0	0	0	0
Dawn	0	0	0	0	0	0	0	0	0	0	0	0
Daylight	2	0	0	0	0	0	0	0	0	0	0	2
Dusk	0	0	0	0	0	0	0	0	0	0	0	0
Unknown	0	0	0	0	0	0	0	0	0	0	0	0
Cloudy												
Dark - Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Not Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Unknown Lighting	0	0	0	0	0	0	0	0	0	0	0	0
Dawn	0	0	0	0	0	0	0	0	0	0	0	0
Daylight	1	0	0	0	0	0	0	0	0	0	0	1
Dusk	0	0	0	0	0	0	0	0	0	0	0	0
Unknown	0	0	0	0	0	0	0	0	0	0	0	0

Maine Department Of Transportation - Office of Safety, Crash Records Section

Crashes by Weather, Light Condition and Road Surface												
Weather Light	Dry	Ice/Frost	Mud, Dirt, Gravel	Oil	Other	Sand	Slush	Snow	Unknown	Water (Standing, Moving)	Wet	Total
Fog, Smog, Smoke												
Dark - Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Not Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Unknown Lighting	0	0	0	0	0	0	0	0	0	0	0	0
Dawn	0	0	0	0	0	0	0	0	0	0	0	0
Daylight	0	0	0	0	0	0	0	0	0	0	0	0
Dusk	0	0	0	0	0	0	0	0	0	0	0	0
Unknown	0	0	0	0	0	0	0	0	0	0	0	0
Other												
Dark - Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Not Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Unknown Lighting	0	0	0	0	0	0	0	0	0	0	0	0
Dawn	0	0	0	0	0	0	0	0	0	0	0	0
Daylight	0	0	0	0	0	0	0	0	0	0	0	0
Dusk	0	0	0	0	0	0	0	0	0	0	0	0
Unknown	0	0	0	0	0	0	0	0	0	0	0	0
Rain												
Dark - Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Not Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Unknown Lighting	0	0	0	0	0	0	0	0	0	0	0	0
Dawn	0	0	0	0	0	0	0	0	0	0	0	0
Daylight	0	0	0	0	0	0	0	0	0	0	0	0
Dusk	0	0	0	0	0	0	0	0	0	0	0	0
Unknown	0	0	0	0	0	0	0	0	0	0	0	0
Severe Crosswinds												
Dark - Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Not Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Unknown Lighting	0	0	0	0	0	0	0	0	0	0	0	0
Dawn	0	0	0	0	0	0	0	0	0	0	0	0
Daylight	0	0	0	0	0	0	0	0	0	0	0	0
Dusk	0	0	0	0	0	0	0	0	0	0	0	0
Unknown	0	0	0	0	0	0	0	0	0	0	0	0

Maine Department Of Transportation - Office of Safety, Crash Records Section

Crashes by Weather, Light Condition and Road Surface												
Weather Light	Dry	Ice/Frost	Mud, Dirt, Gravel	Oil	Other	Sand	Slush	Snow	Unknown	Water (Standing, Moving)	Wet	Total
Sleet, Hail (Freezing Rain or Drizzle)												
Dark - Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Not Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Unknown Lighting	0	0	0	0	0	0	0	0	0	0	0	0
Dawn	0	0	0	0	0	0	0	0	0	0	0	0
Daylight	0	0	0	0	0	0	0	0	0	0	0	0
Dusk	0	0	0	0	0	0	0	0	0	0	0	0
Unknown	0	0	0	0	0	0	0	0	0	0	0	0
Snow												
Dark - Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Not Lighted	0	0	0	0	0	0	0	0	0	0	0	0
Dark - Unknown Lighting	0	0	0	0	0	0	0	0	0	0	0	0
Dawn	0	0	0	0	0	0	0	0	0	0	0	0
Daylight	0	0	0	0	0	0	0	0	0	0	0	0
Dusk	0	0	0	0	0	0	0	0	0	0	0	0
Unknown	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	4	0	0	0	0	0	0	0	0	0	0	4

WHITE ROCK TERRACE

THE SZANTON COMPANY
CUMBERLAND, MAINE

 CIVIL SITE NOTES:
THE Conmactor stall Subut in wring anr reouests to acon to modry the contract documents

 detall shown apply to all smlar conotions unless otherwie nolated.

a all proprietary connectons shall be installed in acoordance wth the manufacturer's recommennatons.

 . tewoprafy bracing shat \qquad All pafenen . jonts shall be samcut and appled wih tack coat pror to paling to provide a durable and
Unforum oun. . Acorn bears no responsielit for the above ites, ano ste observaton vists do not in anr mar ncluoe

 SPECIAL INSPECTION NOTES
 all ste drannage-related work shall be revewed ey acorn enginerina

Mмедate Atention of the contractor for correction

LAYOUT NOTES:

 signage strping, and pavement marknas shall be in accorbance wit the manual on unforn traffic control
oEvices (mucol.

 PERMITTING NOTES

 GRADING AND DRAINAGE NOTES:

 No ADotronal Pamment for unsutabie materals.
Altss. STorm dran plp shall ee smooth bore nitror provong a mannins roughness coeffilent of n=0.012 or aduust all mantoles, catch basns, curb boxes, etc. withn limts of work to finsh grad.

EROSION CONTROL NOTES:

UTILITY NOTES:

 SEWER MANHOLLES SHALL EE 4' ID UNLESS OTHERMSE STATED ON THE PLANS.
Contractor to provie 5^{\prime} of cover from top of pipe to finsh grade for water mans.

 -

 DEMOLITION NOTES:
he folowng tems are trical of materal which may be on ste
Rock And concrete founations
CONCREEIE SAABS

ENCE POST AND EEVCING

drawing no.

CMP TRANSFORMER SETBACKS not to scale

2.

$\frac{\text { WATER SERVICE TRENCH SECTION DETAIL }}{\text { NOT TO SCALLE }}$

nerss

$\frac{\text { BACKFLOW VALVE ASSEMBLY }}{\text { NOT TO SCALE }}$

STORM DRAIN AND SEWER TYPICAL TRENCH SECTION Not to scale

froson covroul wesuis Anv sit stailation

1.2 Pesuner froson covrow wesurs

3.1 Eroson contral ofals n and
an for wintr construction

 Acchorn of of sal sicerpume
 stevie

 Insection nov mantrunce

 5.2 shaulze sowe construciove enrances
 3 mectien areas

5.5 scommatre poustrumces

 Stal

 \qquad

Cviro nes

\qquad

20 steong pun

 \qquad

7.3 sebenc
THE Coveosinow an

temporary seed application rates					
steo	Las / ACoE	Los / 1.000 sF	Recomeneod steong omis		
WNIER Res	${ }^{112}$	2.6	$8 / 15$ 50 010/1	Kenvocr ruugsens	
OAIS	${ }^{80}$	${ }_{1.8}$	$8 / 8 / 151080 / 1 / 15$	CREESME Reo rescue	20.00
	40	0.9	$4 / 107 / 1$	Peremmal Rrceass	4.88
suomemess	40	0.9	5/15 70 8/15		4.8 Lessacte

notrs
 Stancm mar θ necrssary on strep slopes.
 4.

 8.0 cercausor

drawing no.

$\frac{\text { SILTATION FENCE DETALL }}{\text { NOT TO SCALE }}$

plan vew

sectov

-

 STABILIZED CONSTRUCTION ENTRANCE
mstal Sidiope detall

EROSION CONTROL BLANKET SLOPE INSTALLATION
not to scale

STATE OF MAINE
DEPARTMENT OF ENVIRONMENTAL PROTECTION
17 STATE HOUSE STATION AUGUSTA, MAINE 04333-0017
DEPARTMENT ORDER
IN THE MATTER OF

THE SZANTON COMPANY
Cumberland, Cumberland County
CUMBERLAND FORESIDE VILLAGE
LOT 7 DEVELOPMENT
L-21578-39-Z-B (approval)

) SITE LOCATION OF DEVELOPMENT ACT
)
)
) MINOR AMENDMENT
) FINDINGS OF FACT AND ORDER

Pursuant to the provisions of 38 M.R.S. §§ 481-489-E and Chapters 373, 375, 376 and 500 of Department rules, the Department of Environmental Protection (Department) has considered the application of THE SZANTON COMPANY (applicant) with the supportive data, agency review comments, and other related materials on file and FINDS THE FOLLOWING FACTS:

1. PROJECT DESCRIPTION:

A. History of Project: In Department Order \#L-21578-39-A-N/L-21578-TB-B-N, dated March 31, 2004, the Department approved the subdivision of a 51.22-acre parcel of land into 38 residential lots, 2 commercial lots, and a common area. Construction of the project was not started within two years and the permit lapsed. In Department Order \#L-21578-39-C-N/L-21578-TB-D-N, dated February 17, 2007, the Department approved the subdivision of an approximately 54.08 -acre parcel of land into 12 commercial/light industrial lots ranging in size from 1.66 acres to approximately 12.99 acres, with specific maximum buildout areas approved on each of the lots. Several subsequent Department Orders approved other modifications to the development of Cumberland Foreside Village. The development is located on the west side of U.S. Route One in the Town of Cumberland.
B. Summary: The applicant proposes to construct a 12,000 -square foot affordable senior housing multiplex development with associated parking, landscaping, and a stormwater management system on a portion of Lot 107 (a 4.47-acre parcel known as Lot 107A) in the Cumberland Foreside Village development, that will create approximately 2.5 acres of developed area, approximately one acre of which will be impervious area. The proposed project is shown on a set of plans, the first of which is titled "White Rock Terrace - The Szanton Company, Cumberland, Maine," prepared by Acorn Engineering and dated October 25, 2022, with a last revision date on any of the plans of April 10, 2023.

The applicant concurrently submitted a Notice of Intent (NOI) stating that soil disturbance associated with the proposed project will be done in accordance with the Maine Construction General Permit. The Department accepted NOI \#76044 on November 10, 2022.
C. Current Use of Site: The project site is currently undeveloped scrub and woodland. The applicant's parcel is identified as Lot 11-7 on Map R01 of the Town of Cumberland's tax maps.

2. FINANCIAL CAPACITY:

The total cost of the project is estimated to be $\$ 19,000,000$. The applicant intends to finance construction through a combination of a construction loan, low-income housing tax credit equity, a MaineHousing subsidy, and HOME funding through Cumberland County. The applicant stated that it has a long history of successfully developing properties with similar financing structures. An application has been submitted to MaineHousing for Low-Income Housing Tax Credit Equity, which allocates the right to take the tax credits that are spaced out over ten years. These tax credits are sold to investors and the proceeds are used as equity to pay for the construction and other costs of the development.

Prior to the start of construction, the applicant must submit evidence that it has been granted a line of credit or a loan by a financial institution authorized to do business in this State or evidence of any other form of financial assurance consistent with Department Rules, Chapter 373, § 1. to the Bureau of Land Resources (BLR) for review and approval.

The Department finds that the applicant has demonstrated adequate financial capacity to comply with Department standards provided that prior to the start of construction the applicant submits additional financial information as outlined above.

3. TECHNICAL ABILITY:

The applicant has successfully developed numerous buildings located in Maine and New Hampshire, with two under construction and three in pre-development. The applicant owns a sister company, Saco Falls Management, that manages all the properties it develops. The applicant also retained the services of Acorn Engineering, Inc., a professional engineering firm, to assist in the design and engineering of the project.

The Department finds that the applicant has demonstrated adequate technical ability to comply with Department standards.

4. NOISE:

The applicant stated that the proposed project will have no significant noise impact associated with the completed development, and that typical noise will be consistent with surrounding uses. The parcel is within the Cumberland Foreside Village, which is located in Cumberland's Commercial-South Zoning District, abuts other commercial lots, and is adjacent to U.S. Route One.

The applicant proposes to limit construction on the site to the hours between 7:00 A.M. and 7:00 P.M. Construction noise during these hours is exempt pursuant to 38 M.R.S. § 484(3)(A). After construction, noise from the site will be limited to vehicular and other activities that are also exempt pursuant to Chapter 375, § 10(C)(5).

The Department finds that the applicant has made adequate provision for the control of excessive environmental noise from the proposed project.

5. STORMWATER MANAGEMENT:

The proposed project includes approximately 2.5 acres of developed area, of which approximately one acre is impervious area. It lies within the watershed of Norton Brook. The applicant submitted a stormwater management plan based on the Basic, General and Flooding Standards contained in Chapter 500 Stormwater Management rules (06-096 C.M.R. Ch. 500, effective August 12, 2015). The proposed stormwater management system consists of a lined, grassed underdrained soil filter, two roof drip line filters, and a rain garden.
A. Basic Standards:
(1) Erosion and Sedimentation Control: The applicant submitted an Erosion and Sedimentation Control Plan (Section 12 of the application) that is based on the performance standards contained in Appendix A of Chapter 500 and the Best Management Practices outlined in the Maine Erosion and Sediment Control BMPs, which were developed by the Department. This plan and plan sheets containing erosion control details were reviewed by, and revised in response to the comments of, the Bureau of Land Resources (BLR).

Erosion control details will be included on the final construction plans and the erosion control narrative will be included in the project specifications to be provided to the construction contractor.
(2) Inspection and Maintenance: The applicant submitted a maintenance plan that addresses both short and long-term maintenance requirements. The maintenance plan is based on the standards contained in Appendix B of Chapter 500. This plan was reviewed by, and revised in response to the comments of, the BLR. The applicant will be responsible for the maintenance of all common facilities including the stormwater management system.

Storm sewer grit and sediment materials removed from stormwater control structures during maintenance activities must be disposed of in compliance with the Maine Solid Waste Management Rules.
(3) Housekeeping: The proposed project will comply with the performance standards outlined in Appendix C of Chapter 500.

Based on the BLR's review of the erosion and sedimentation control plan and the maintenance plan, the Department finds that the proposed project meets the Basic Standards contained in Chapter 500, §4(B), provided storm sewer grit and sediment materials are removed from stormwater control structures as described above.

B. General Standards:

The applicant's stormwater management plan includes general treatment measures that will mitigate for the increased frequency and duration of channel erosive flows due to runoff from smaller storms, provide for effective treatment of pollutants in stormwater, and mitigate potential temperature impacts. This mitigation is being achieved by using Best Management Practices (BMPs) that will control runoff from no less than 95% of the impervious area and no less than 80% of the developed area.

The stormwater management system proposed by the applicant was reviewed by, and revised in response to comments from BLR. After a final review, BLR commented that that the proposed stormwater management system is designed in accordance with the General Standards contained in Chapter 500, § 4(B), and recommended the applicant retain its design engineer or other qualified professional engineer to oversee the construction of the stormwater management structures according to the details and notes specified on the approved plans. Within 30 days of completion of each of the stormwater structures, the applicant must submit as-built drawings and a log of inspection reports detailing the items inspected, photographs taken, and the date of each inspection to the BLR for review.

Based on the stormwater system's design and BLR's review, the Department finds that the applicant has made adequate provision to ensure that the proposed project will meet the General Standards contained in Chapter 500, § 4(C) provided that oversight and inspections are performed and as-built drawings are submitted as described above.

C. Flooding Standard:

The applicant is proposing to utilize a stormwater management system based on estimates of pre- and post-development stormwater runoff flows obtained by using Hydrocad, a stormwater modeling software that utilizes the methodologies outlined in Technical Releases \#55 and \#20, U.S.D.A., Soil Conservation Service and detains stormwater from 24 -hour storms of $2-, 10$-, and 25 -year frequency. The post-development peak flow from the site will not exceed the pre-development peak flow from the site and the peak flow of the receiving water will not be increased as a result of stormwater runoff from the development site.

BLR commented that the proposed system is designed in accordance with the Flooding Standard contained in Chapter 500, § 4(F).

Based on the system's design and BLR's review, the Department finds that the applicant has made adequate provision to ensure that the proposed project will meet the Flooding

Standard contained in Chapter 500, § 4(F) for peak flow from the project site, and channel limits and runoff areas.

6. SOLID WASTE:

When completed, the proposed project is anticipated to generate 32 cubic yards of general solid waste per month. All solid waste generated from the proposed project will be transported to the Cumberland transfer station and ultimately to the Mid-Maine Waste Action facility in Auburn, which is currently in substantial compliance with the Maine Solid Waste Management Rules.

The proposed project will generate approximately 600 cubic yards of stumps and grubbings. Marketable timber will be cut to tree length and sold. All stumps and grubbings generated will be processed on site and used for erosion control during construction.

The proposed project will generate approximately 250 cubic yards of construction and demolition debris. All construction and demolition debris generated will be taken to Riverside Recycling Facility in Portland or Resource Waste Services in Lewiston, with the ultimate destination being either Crossroads Landfill in Norridgewock, which is currently in substantial compliance with the Maine Solid Waste Management Rules, or Turnkey Landfill in Rochester, New Hampshire, which is an acceptable method of disposal.

Based on the above information, the Department finds that the applicant has made adequate provision for solid waste disposal.

7. SOILS:

The applicant submitted a soil survey map based on the soils found at the project site. This information was reviewed by BLR staff, who commented that generally the soils on the site appear suitable for the proposed development.

Prior to the start of construction, the applicant must submit geotechnical information to the BLR for review and approval.

The applicant submitted a Blasting Plan for the proposed project, which was reviewed by BLR. Prior to any blasting on site, the applicant must submit an updated Blasting Plan, including pre-blast survey criteria, prepared by a qualified blaster that meets the blasting standards contained in 38 M.R.S. § 490-Z (14) to the BLR for review and approval.

The applicant stated that heat pumps will be used and that no emergency generator or onsite liquid petroleum storage is proposed.

8. WATER SUPPLY:

When completed, the proposed project is anticipated to use 7,080 gallons of water per day. Water will be supplied by the Portland Water District. The applicant submitted a letter from the District, dated November 2, 2022 indicating that it will be able to serve the proposed project.

9. WASTEWATER DISPOSAL:

When completed, the proposed project is anticipated to discharge 7,080 gallons of wastewater per day to the Falmouth Wastewater Treatment Plant under an inter-local agreement. The applicant submitted a letter from the Town of Cumberland, dated December 8, 2022, stating that it will accept these flows. The application was reviewed by the Division of Water Quality Management (DWQM) of the Bureau of Water Quality, which commented that the Falmouth Wastewater Treatment Plant has the capacity to treat these flows and is operating in compliance with the water quality laws of the State of Maine.

Based on DWQM's comments, the Department finds that the applicant has made adequate provision for wastewater disposal at a facility that has the capacity to ensure satisfactory treatment.

10. ALL OTHER:

All other Findings of Fact, Conclusions and Conditions remain as approved in Department Order \#L-21578-39-C-N/L-21578-TB-D-N, and subsequent Orders.

BASED on the above findings of fact, and subject to the conditions listed below, the Department makes the following conclusions pursuant to 38 M.R.S. §§ 481-489-E:
A. The applicant has provided adequate evidence of financial capacity and technical ability to develop the project in a manner consistent with state environmental standards provided that the applicant submits evidence of financial capacity in accordance with Finding 2.
B. The applicant has made adequate provision for fitting the development harmoniously into the existing natural environment and the development will not adversely affect existing uses, scenic character, air quality, water quality or other natural resources in the municipality or in neighboring municipalities.
C. The proposed development will be built on soil types which are suitable to the nature of the undertaking and will not cause unreasonable erosion of soil or sediment nor inhibit the natural transfer of soil provided geotechnical information and a site specific Blasting Plan are submitted for review and approval prior to the start of construction as described in Finding 8.
D. The proposed development meets the standards for storm water management in 38 M.R.S. § 420-D and the standard for erosion and sedimentation control in 38 M.R.S. § 420-C provided oversight, inspections and as-built drawings are submitted and storm sewer grit and sediment materials are removed from stormwater control structures as described in Finding 5.
E. The proposed development will not pose an unreasonable risk that a discharge to a significant groundwater aquifer will occur.
F. The applicant has made adequate provision of utilities, including water supplies, sewerage facilities and solid waste disposal required for the development and the development will not have an unreasonable adverse effect on the existing or proposed utilities in the municipality or area served by those services.
G. The activity will not unreasonably cause or increase the flooding of the alteration area or adjacent properties nor create an unreasonable flood hazard to any structure.

THEREFORE, the Department APPROVES the application of THE SZANTON COMPANY to develop Lot 107-A of Cumberland Foreside Village as described in Finding 1, SUBJECT TO THE FOLLOWING CONDITIONS and all applicable standards and regulations:

1. The Standard Conditions of Approval, a copy attached.
2. In addition to any specific erosion control measures described in this or previous orders, the applicant shall take all necessary actions to ensure that its activities or those of its agents do not result in noticeable erosion of soils or fugitive dust emissions on the site during the construction and operation of the project covered by this approval.
3. Severability. The invalidity or unenforceability of any provision, or part thereof, of this License shall not affect the remainder of the provision or any other provisions. This License shall be construed and enforced in all respects as if such invalid or unenforceable provision or part thereof had been omitted.
4. Prior to the start of construction, the applicant shall submit evidence that it has been granted a line of credit or a loan by a financial institution authorized to do business in this State or evidence of any other form of financial assurance determined by Department Rules, Chapter 373(1), to be adequate to the BLR for review and approval.
5. The applicant shall dispose of storm sewer grit and sediment materials from stormwater control structures during maintenance activities in compliance with the Maine Solid Waste Management Rules.
6. The applicant shall retain the services of either the design engineer or another qualified professional engineer to oversee the construction of the stormwater management system in accordance with the details and notes specified on the approved plans.
7. Within 30 days of the completion of the stormwater management structures, the applicant shall submit as-built drawings, a log of inspection reports detailing the items inspected, photographs taken, and the date of each inspection to the BLR for review.
8. Prior to the start of construction, the applicant shall submit geotechnical information to the BLR for review and approval.
9. Prior to any blasting on site, the applicant shall submit an updated Blasting Plan, including pre-blast survey criteria, prepared by a qualified blaster that meets the blasting standards contained in 38 M.R.S. § 490-Z (14) to the BLR for review and approval.
10. All other Findings of Fact, Conclusions and Conditions remain as approved in Department Order \#-21578-39-C-N/L-21578-TB-D-N, and subsequent Orders, and are incorporated herein.

THIS APPROVAL DOES NOT CONSTITUTE OR SUBSTITUTE FOR ANY OTHER REQUIRED STATE, FEDERAL OR LOCAL APPROVALS NOR DOES IT VERIFY COMPLIANCE WITH ANY APPLICABLE SHORELAND ZONING ORDINANCES.

DONE AND DATED IN AUGUSTA, MAINE, THIS 11² DAY OF APRIL 2023.
DEPARTMENT OF ENVIRONMENTAL PROTECTION

BY:

For: Melanie Loyzim, Commissioner
PLEASE NOTE THE ATTACHED SHEET FOR GUIDANCE ON APPEAL PROCEDURES.
MR/L21578ZB/ATS\#90273

FILED
April 11 ${ }^{\text {th }}, 2023$
State of Maine
Board of Environmental Protection

Department of Environmental Protection
 SITE LOCATION OF DEVELOPMENT (SITE) STANDARD CONDITIONS

A. Approval of Variations from Plans. The granting of this approval is dependent upon and limited to the proposals and plans contained in the application and supporting documents submitted and affirmed to by the applicant. Any variation from these plans, proposals, and supporting documents is subject to review and approval prior to implementation. Further subdivision of proposed lots by the applicant or future owners is specifically prohibited without prior approval of the Board, and the applicant shall include deed restrictions to that effect.
B. Compliance with All Applicable Laws. The applicant shall secure and comply with all applicable federal, state, and local licenses, permits, authorizations, conditions, agreements, and orders prior to or during construction and operation, as appropriate.
C. Compliance with All Terms and Conditions of Approval. The applicant shall submit all reports and information requested by the Board or the Department demonstrating that the applicant has complied or will comply with all preconstruction terms and conditions of this approval. All preconstruction terms and conditions must be met before construction begins.
D. Advertising. Advertising relating to matters included in this application shall refer to this approval only if it notes that the approval has been granted WITH CONDITIONS, and indicates where copies of those conditions may be obtained.
E. Transfer of Development. Unless otherwise provided in this approval, the applicant shall not sell, lease, assign or otherwise transfer the development or any portion thereof without prior written approval of the Board where the purpose or consequence of the transfer is to transfer any of the obligations of the developer as incorporated in this approval. Such approval shall be granted only if the applicant or transferee demonstrates to the Board that the transferee has the technical capacity and financial ability to comply with conditions of this approval and the proposals and plans contained in the application and supporting documents submitted by the applicant.
F. Time frame for approvals. If the construction or operation of the activity is not begun within four years, this approval shall lapse and the applicant shall reapply to the Board for a new approval. The applicant may not begin construction or operation of the development until a new approval is granted. A reapplication for approval may include information submitted in the initial application by reference. This approval, if construction is begun within the four-year time frame, is valid for seven years. If construction is not completed within the seven-year time frame, the applicant must reapply for, and receive, approval prior to continuing construction.
G. Approval Included in Contract Bids. A copy of this approval must be included in or attached to all contract bid specifications for the development.
H. Approval Shown to Contractors. Work done by a contractor pursuant to this approval shall not begin before the contractor has been shown by the developer a copy of this approval.

STORMWATER STANDARD CONDITIONS

STRICT CONFORMANCE WITH THE STANDARD AND SPECIAL CONDITIONS OF THIS APPROVAL IS NECESSARY FOR THE PROJECT TO MEET THE STATUTORY CRITERIA FOR APPROVAL

Standard conditions of approval. Unless otherwise specifically stated in the approval, a department approval is subject to the following standard conditions pursuant to Chapter 500 Stormwater Management Law.
(1) Approval of variations from plans. The granting of this approval is dependent upon and limited to the proposals and plans contained in the application and supporting documents submitted and affirmed to by the permittee. Any variation from these plans, proposals, and supporting documents must be reviewed and approved by the department prior to implementation. Any variation undertaken without approval of the department is in violation of 38 M.R.S. §420$\mathrm{D}(8)$ and is subject to penalties under 38 M.R.S. $\S 349$.
(2) Compliance with all terms and conditions of approval. The applicant shall submit all reports and information requested by the department demonstrating that the applicant has complied or will comply with all terms and conditions of this approval. All preconstruction terms and conditions must be met before construction begins.
(3) Advertising. Advertising relating to matters included in this application may not refer to this approval unless it notes that the approval has been granted WITH CONDITIONS, and indicates where copies of those conditions may be obtained.
(4) Transfer of project. Unless otherwise provided in this approval, the applicant may not sell, lease, assign, or otherwise transfer the project or any portion thereof without written approval by the department where the purpose or consequence of the transfer is to transfer any of the obligations of the developer as incorporated in this approval. Such approval may only be granted if the applicant or transferee demonstrates to the department that the transferee agrees to comply with conditions of this approval and the proposals and plans contained in the application and supporting documents submitted by the applicant. Approval of a transfer of the permit must be applied for no later than two weeks after any transfer of property subject to the license.
(5) Time frame for approvals. If the construction or operation of the activity is not begun within four years, this approval shall lapse and the applicant shall reapply to the department for a new approval. The applicant may not begin construction or operation of the project until a new approval is granted. A reapplication for approval may include information submitted in the initial application by reference. This approval, if construction is begun within the four-year time frame, is valid for seven years. If construction is not completed within the seven-year time frame, the applicant must reapply for, and receive, approval prior to continuing construction.
(6) Certification. Contracts must specify that "all work is to comply with the conditions of the Stormwater Permit." Work done by a contractor or subcontractor pursuant to this approval may not begin before the contractor and any subcontractors have been shown a copy of this approval with the conditions by the permittee, and the permittee and each contractor and sub-contractor has certified, on a form provided by the department, that the approval and conditions have been received and read, and that the work will be carried out in accordance with the approval and conditions. Completed certification forms must be forwarded to the department.
(7) Maintenance. The components of the stormwater management system must be adequately maintained to ensure that the system operates as designed, and as approved by the Department. If maintenance responsibility is to be transferred from the permittee to another entity, a transfer request must be filed with the Department which includes the name and contact information for the person or entity responsible for this maintenance. The form must be signed by the responsible person or agent of the responsible entity.
(8) Recertification requirement. Within three months of the expiration of each five-year interval from the date of issuance of the permit, the permittee shall certify the following to the department.
(a) All areas of the project site have been inspected for areas of erosion, and appropriate steps have been taken to permanently stabilize these areas.
(b) All aspects of the stormwater control system are operating as approved, have been inspected for damage, wear, and malfunction, and appropriate steps have been taken to repair or replace the system, or portions of the system, as necessary.
(c) The stormwater maintenance plan for the site is being implemented as approved by the Department, and the maintenance log is being maintained.
(d) All proprietary systems have been maintained according to the manufacturer's recommendations. Where required by the Department, the permittee shall execute a 5 -year maintenance contract with a qualified professional for the coming 5-year interval. The maintenance contract must include provisions for routine inspections, cleaning, and general maintenance.
(e) The Department may waive some or all of these recertification requirements on a case-by-case basis for permittees subject to the Department's Multi-Sector General Permit ("MSGP") and/or Maine Pollutant Discharge Elimination System ("MEPDES") programs where it is demonstrated that these programs are providing stormwater control that is at least as effective as required pursuant to this Chapter.
(9) Transfer of property subject to the license. If any portion of the property subject to the license containing areas of flow or areas that are flooded are transferred to a new property owner, restrictive covenants protecting these areas must be included in any deeds or leases, and recorded at the appropriate county registry of deeds. Also, in all transfers of such areas and areas containing parts of the stormwater management system, deed restrictions must be included making the property transfer subject to all applicable terms and conditions of the permit. These terms and conditions must be incorporated by specific and prominent reference to the permit in the deed. All transfers must include in the restrictions the requirement that any subsequent transfer must specifically include the same restrictions unless their removal or modification is approved by the Department. These restrictions must be written to be enforceable by the Department, and must reference the permit number.
(10) Severability. The invalidity or unenforceability of any provision, or part thereof, of this permit shall not affect the remainder of the provision or any other provisions. This permit shall be construed and enforced in all respects as if such invalid or unenforceable provision or part thereof had been omitted.

November 16, 2005 (revised August 15, 2015)

DEP INFORMATION SHEET Appealing a Department Licensing Decision

Dated: August 2021

Contact: (207) 314-1458

SUMMARY

This document provides information regarding a person's rights and obligations in filing an administrative or judicial appeal of a licensing decision made by the Department of Environmental Protection's (DEP) Commissioner.

Except as provided below, there are two methods available to an aggrieved person seeking to appeal a licensing decision made by the DEP Commissioner: (1) an administrative process before the Board of Environmental Protection (Board); or (2) a judicial process before Maine's Superior Court. An aggrieved person seeking review of a licensing decision over which the Board had original jurisdiction may seek judicial review in Maine's Superior Court.
A judicial appeal of final action by the Commissioner or the Board regarding an application for an expedited wind energy development (35-A M.R.S. \& 3451(4)) or a general permit for an offshore wind energy demonstration project (38 M.R.S. $\S 480-\mathrm{HH}(1)$) or a general permit for a tidal energy demonstration project (38 M.R.S. § $636-\mathrm{A}$) must be taken to the Supreme Judicial Court sitting as the Law Court.

I. ADMINISTRATIVE APPEALS TO THE BOARD

LEGAL REFERENCES

A person filing an appeal with the Board should review Organization and Powers, 38 M.R.S. $\$ \S 341-\mathrm{D}(4)$ and 346; the Maine Administrative Procedure Act, 5 M.R.S. § 11001; and the DEP's Rule Concerning the Processing of Applications and Other Administrative Matters (Chapter 2), 06-096 C.M.R. Ch. 2.

Deadline to Submit an Appeal to the Board

Not more than 30 days following the filing of a license decision by the Commissioner with the Board, an aggrieved person may appeal to the Board for review of the Commissioner's decision. The filing of an appeal with the Board, in care of the Board Clerk, is complete when the Board receives the submission by the close of business on the due date (5:00 p.m. on the $30^{\text {th }}$ calendar day from which the Commissioner's decision was filed with the Board, as determined by the received time stamp on the document or electronic mail). Appeals filed after 5:00 p.m. on the $30^{\text {th }}$ calendar day from which the Commissioner's decision was filed with the Board will be dismissed as untimely, absent a showing of good cause.

How to Submit an Appeal to the Board

An appeal to the Board may be submitted via postal mail or electronic mail and must contain all signatures and required appeal contents. An electronic filing must contain the scanned original signature of the appellant(s). The appeal documents must be sent to the following address.

Chair, Board of Environmental Protection
c/o Board Clerk
17 State House Station
Augusta, ME 04333-0017
ruth.a.burke@ maine.gov

The DEP may also request the submittal of the original signed paper appeal documents when the appeal is filed electronically. The risk of material not being received in a timely manner is on the sender, regardless of the method used.

At the time an appeal is filed with the Board, the appellant must send a copy of the appeal to: (1) the Commissioner of the DEP (Maine Department of Environmental Protection, 17 State House Station, Augusta, Maine 04333-0017); (2) the licensee; and if a hearing was held on the application, (3) any intervenors in that hearing proceeding. Please contact the DEP at 207-287-7688 with questions or for contact information regarding a specific licensing decision.

Required Appeal contents

A complete appeal must contain the following information at the time the appeal is submitted.

1. Aggrieved status. The appeal must explain how the appellant has standing to bring the appeal. This requires an explanation of how the appellant may suffer a particularized injury as a result of the Commissioner's decision.
2. The findings, conclusions, or conditions objected to or believed to be in error. The appeal must identify the specific findings of fact, conclusions of law, license conditions, or other aspects of the written license decision or of the license review process that the appellant objects to or believes to be in error.
3. The basis of the objections or challenge. For the objections identified in Item \#2, the appeal must state why the appellant believes that the license decision is incorrect and should be modified or reversed. If possible, the appeal should cite specific evidence in the record or specific licensing criteria that the appellant believes were not properly considered or fully addressed.
4. The remedy sought. This can range from reversal of the Commissioner's decision on the license to changes in specific license conditions.
5. All the matters to be contested. The Board will limit its consideration to those matters specifically raised in the written notice of appeal.
6. Request for hearing. If the appellant wishes the Board to hold a public hearing on the appeal, a request for hearing must be filed as part of the notice of appeal, and it must include an offer of proof regarding the testimony and other evidence that would be presented at the hearing. The offer of proof must consist of a statement of the substance of the evidence, its relevance to the issues on appeal, and whether any witnesses would testify. The Board will hear the arguments in favor of and in opposition to a hearing on the appeal and the presentations on the merits of an appeal at a regularly scheduled meeting. If the Board decides to hold a public hearing on an appeal, that hearing will then be scheduled for a later date.
7. New or additional evidence to be offered. If an appellant wants to provide evidence not previously provided to DEP staff during the DEP's review of the application, the request and the proposed supplemental evidence must be submitted with the appeal. The Board may allow new or additional evidence to be considered in an appeal only under limited circumstances. The proposed supplemental evidence must be relevant and material, and (a) the person seeking to add information to the record must show due diligence in bringing the evidence to the DEP's attention at the earliest possible time in the licensing process; or (b) the evidence itself must be newly discovered and therefore unable to have been presented earlier in the process. Requirements for supplemental evidence are set forth in Chapter 2 \& 24.

Other Considerations in Appealing a Decision to the Board

1. Be familiar with all relevant material in the DEP record. A license application file is public information, subject to any applicable statutory exceptions, and is made accessible by the DEP. Upon request, the DEP will make application materials available to review and photocopy during normal working hours. There may be a charge for copies or copying services.
2. Be familiar with the regulations and laws under which the application was processed, and the procedural rules governing the appeal. DEP staff will provide this information upon request and answer general questions regarding the appeal process.
3. The filing of an appeal does not operate as a stay to any decision. If a license has been granted and it has been appealed, the license normally remains in effect pending the processing of the appeal. Unless a stay of the decision is requested and granted, a licensee may proceed with a project pending the outcome of an appeal, but the licensee runs the risk of the decision being reversed or modified as a result of the appeal.

What to Expect Once You File a Timely Appeal with the Board

The Board will acknowledge receipt of an appeal, and it will provide the name of the DEP project manager assigned to the specific appeal. The notice of appeal, any materials admitted by the Board as supplementary evidence, any materials admitted in response to the appeal, relevant excerpts from the DEP's administrative record for the application, and the DEP staff's recommendation, in the form of a proposed Board Order, will be provided to Board members. The appellant, the licensee, and parties of record are notified in advance of the date set for the Board's consideration of an appeal or request for a hearing. The appellant and the licensee will have an opportunity to address the Board at the Board meeting. The Board will decide whether to hold a hearing on appeal when one is requested before deciding the merits of the appeal. The Board's decision on appeal may be to affirm all or part, affirm with conditions, order a hearing to be held as expeditiously as possible, reverse all or part of the decision of the Commissioner, or remand the matter to the Commissioner for further proceedings. The Board will notify the appellant, the licensee, and parties of record of its decision on appeal.

II. Judicial Appeals

Maine law generally allows aggrieved persons to appeal final Commissioner or Board licensing decisions to Maine's Superior Court (see 38 M.R.S. § 346(1); 06-096 C.M.R. Ch. 2; 5 M.R.S. § 11001; and M.R. Civ. P. 80C). A party's appeal must be filed with the Superior Court within 30 days of receipt of notice of the Board's or the Commissioner's decision. For any other person, an appeal must be filed within 40 days of the date the decision was rendered. An appeal to court of a license decision regarding an expedited wind energy development, a general permit for an offshore wind energy demonstration project, or a general permit for a tidal energy demonstration project may only be taken directly to the Maine Supreme Judicial Court. See 38 M.R.S. § 346(4).

Maine's Administrative Procedure Act, DEP statutes governing a particular matter, and the Maine Rules of Civil Procedure must be consulted for the substantive and procedural details applicable to judicial appeals.

ADDITIONAL INFORMATION

If you have questions or need additional information on the appeal process, for administrative appeals contact the Board Clerk at 207-287-2811 or the Board Executive Analyst at 207-314-1458 bill.hinkel@maine.gov, or for judicial appeals contact the court clerk's office in which the appeal will be filed.

Note: This information sheet, in conjunction with a review of the statutory and regulatory provisions referred to herein, is provided to help a person to understand their rights and obligations in filing an administrative or judicial appeal. The DEP provides this information sheet for general guidance only; it is not intended for use as a legal reference. Maine law governs an appellant's rights.

Cumberland Planning Board Notice of Decision

Date: December 22, 2022
To: Travis Letellier, P.E.
Acorn Engineering, Inc.
P. O. Box 3372

Portland, ME 04104
From: Carla Nixon, Town Planner
Re: Final Major Subdivision Review for White Rock Terrace, a four story, 55 unit, senior, affordable apartment building with a 13,500 square foot building footprint to be located off Sky View Drive, on a 4.5 acre portion of the lot shown on Tax Assessor Map R01, Lot 11-7 in the Cumberland Foreside Village Subdivision. Applicant: Kristin Martin - The Szanton Company. Owner: Peter Kennedy, Heritage Village Development Group, LLC.
Representative: Travis Letellier, P.E., Acorn Engineering, Inc.
This is to advise you that on Tuesday, December 20, 2022, the Cumberland Planning Board conducted a Public Hearing to receive comments regarding Final Major Subdivision Review for White Rock Terrace, a four story, 55 unit, senior, affordable apartment building to be located off Sky View Drive, on a portion of the lot shown on Tax Assessor Map R01, Lot 11-7 and voted unanimously to approve final major subdivision review subject to the expiration of approval, the standard condition of approval and thirteen conditions of approval.

Findings of Fact: As follows.

Waivers Granted Previously:

1. Waiver from a hydrogeologic study.
2. Waiver from a high intensity soil survey.
3. Partial waiver of the parking requirement to reduce the number of required spaces from 2 spaces per unit to 1.4 spaces per unit.
4. Waiver from the noting the location of trees greater than 10 " in diameter on the plan.

Waivers Denied: None.
EXPIRATION OF APPROVAL: Construction of the improvements covered by any site plan approval must be substantially commenced with 12 months of the date upon which the approval was granted. If construction has not been substantially commenced within 12 months of the date upon which approval was granted, the approval shall be null and void. If construction has not been substantially completed within 24 months of the date upon which approval was granted or within a time period as specified by the Planning Board, the approval shall be null and void. The applicant may request an extension of the period. Such request must be made in writing and must be made to the Planning Board. The Planning Board may grant up to two one-year extensions to the period if the approved plan conforms to the ordinances in effect at the time the extension is granted and any and all federal and state approvals and permits are current.

STANDARD CONDITION OF APPROVAL: This approval is dependent upon and limited to the proposals and plans contained in the application and supporting documents submitted by the applicant. Any variation from the plans, proposals and supporting documents, except de minimis changes as so determined by the Town Planner which do not affect approval standards, is subject to review and approval of the Planning Board prior to implementation.

Conditions of Approval:

1. A preconstruction conference is required prior to the start of construction.
2. The amended SLODA permit shall be submitted to the Town Planner prior to the preconstruction conference.
3. A performance guarantee in an amount and form acceptable to the Town Manager will be required prior to the preconstruction conference.
4. All clearing limits shall be flagged and approved by the Town Engineer prior to the preconstruction conference.
5. A blasting permit, if required, shall be obtained from the Code Enforcement Officer.
6. All legal and technical review fees shall be paid to the Town prior to the preconstruction conference.
7. An electronic copy of the as-built plans shall be submitted to the Town Planner prior to the release of any remaining inspection fees.
8. The owner will be responsible for the removal of solid waste via a private waste hauler.
9. A sign permit for any proposed signs is required.
10.All storage for fuel, chemicals, chemical or industrial wastes, biodegradable raw materials, or liquid, gaseous or solid materials shall meet the standards of the Maine Department of Environmental Protection and the State Fire Marshal's office.
10. The building shall comply with the requirements of the State Fire Marshal's Office and the Town Fire Chief.
11. A parking study after one year of occupancy shall be conducted to determine if the area reserved for additional parking should be utilized.
12. A final landscaping plan with additional tree plantings between the building and Skyview Drive and between the building and Nautical Way be reviewed and approved by the Town Planner prior to the pre-construction conference.

Cumberland Planning Board

> Jason Record, Chair

Findings of Fact - Chapter 250 Subdivision of Land

The purpose of these standards shall be to assure the comfort, convenience, safety, health and welfare of the people, to protect the environment and to promote the development of an economically sound and stable community. To this end, in approving subdivisions within the Town of Cumberland, Maine, the Board shall consider the following criteria and before granting approval shall determine that the proposed subdivision:

1. Pollution. The proposed subdivision will not result in undue water or air pollution. In making this determination, it shall at least consider:
A. The elevation of the land above sea level and its relation to the flood plains;
B. The nature of soils and subsoil and their ability to adequately support waste disposal;
C. The slope of the land and its effect on effluents;
D. The availability of streams for disposal of effluents; and
E. The applicable state and local health and water resource rules and regulations;

There are no flood plains on site. The project will be served by public sewer. There are no streams on the site. Based on the information provided, the Board finds that the standards of this section have been met.
2. Sufficient Water. The proposed subdivision has sufficient water available for the reasonable foreseeable needs of the subdivision; The project will be served by public water; a capacity to serve letter is on file from the Portland Water District. Based on the information provided, The Board finds that the standards of this section have been met.
3. Municipal Water Supply. The proposed subdivision will not cause an unreasonable burden on an existing water supply, if one is to be used; The 55 apartment units will not create a burden on the existing municipal water supply as indicated in the capacity to serve letter from Portland Water District. Based on the information provided, the Board finds the standards of this section have been met.
4. Erosion. The proposed subdivision will not cause unreasonable soil erosion or a reduction in the land's capacity to hold water so that a dangerous or unhealthy condition results; An erosion and sedimentation control plan that includes housekeeping procedures for maintenance has been submitted and the plan has been reviewed by the Town Engineer. Based on the information provided, the Board finds that the standards of this section have been met..
5. Traffic. The proposed subdivision will not cause unreasonable highway or public road congestion or unsafe conditions with respect to the use of the highways or public roads existing or proposed; A traffic impact assessment dated 10/24/22 was submitted that shows estimated trip counts. The repost states that the project will be a low trip generator and will not require a traffic movement permit from MDTO. Based on the information provided, the Board finds that the standards of this section have been met.
6. Sewage disposal. The proposed subdivision will provide for adequate sewage waste disposal and will not cause an unreasonable burden on municipal services, if they are utilized;
The project will not cause an unreasonable burden on the municipal sewer system as indicated in the capacity to serve letters from the Portland Water District and the Town Manager. Based on the information provided, the Board finds that the standards of this section have been met.
7. Municipal solid waste disposal. The proposed subdivision will not cause an unreasonable burden on the municipality's ability to dispose of solid waste, if municipal services are to be utilized; The property management company or owner will be responsible for locating the solid waste and recyclable material to the space allocated for solid waste storage as noted on Site Plan Sheet C-10. A commercial waste hauler will dispose of the trash that is placed in the dumpster. Based on the information provided, the Board finds that the standards of this section have been met.
8. Aesthetic, cultural and natural values. The proposed subdivision will not have an undue adverse effect on the scenic or natural beauty of the area, aesthetics, historic sites, significant wildlife habitat identified by the Department of Inland Fisheries and Wildlife or the municipality, or rare and irreplaceable natural areas or any public rights for physical or visual access to the shoreline;
Letters are on file from State agencies indicating that the proposed subdivision will have no adverse impact on any of the above features. The Board finds that the standards of this section have been met.
9. Conformity with local ordinances and plans. The proposed subdivision conforms to a duly adopted subdivision regulation or ordinance, comprehensive plan, development plan or land use plan, if any. In making this determination, the municipal reviewing authority may interpret these ordinances and plans; The plans have been reviewed and approved by the Town Planner, the Town Engineer and Town department heads. The Board finds that the standards of this section have been met.
10. Financial and technical capacity. The subdivider has adequate financial and technical capacity to meet the standards of this section;
Financial Capacity: The total project budget is approximately \$19,000,000. A statement of Financial Capacity, including funding sources, was submitted in the application packet.
Technical capacity is evidenced by the use of professional technical consultants as outlined in the application packet. In addition, a statement from the developer was provided that gave an overview of past projects completed in Maine and New Hampshire.
The Board finds that the standards of this section have been met.
11. Surface waters; outstanding river segments. Whenever situated entirely or partially within the watershed of any pond or lake or within 250 feet of any wetland, great pond or river as defined in Title 38 chapter 3, subchapter I, article 2-B, the proposed subdivision will not adversely affect the quality of that body of water or unreasonably affect the shoreline of the body of water; The project is not situated in any of the areas listed above. Based on the information provided, the Board finds that the standards of this section have been met.
12. Ground water. The proposed subdivision will not alone, or in conjunction with, existing activities, adversely affect the quality or quantity of ground water; The residential apartments, which will be served by public water and sewer, will not adversely affect the quantity or quality of groundwater. Based on the information provided, the Board finds that the standards of this section have been met.
13. Flood areas. Based on the Federal Emergency Management Agency's Flood Boundary and Floodway Maps and Flood Insurance Rate Maps, and information presented by the applicant whether the subdivision is in a flood-prone area. If the subdivision, or any part of it, is in such an area, the subdivider shall determine the 100-year flood elevation and flood hazard boundaries within the subdivision. The proposed subdivision plan must include a condition of plan approval requiring that principal structures in the subdivision will be constructed with their lowest floor, including the basement, at least one foot above the 100-year flood elevation; The development is not located within a 100 year flood plain as shown on the applicable FEMA Flood Insurance Rate Map. Based on the information provided, the Board finds that the standards of this section have been met.
14. Storm water. The proposed subdivision will provide for adequate storm water management; A stormwater Management Report dated October, 2022 was included in the application. The proposed development has been designed to manage stormwater runoff through Best Management Practices approved by MDEP. The plan has been reviewed and approved by the Town Engineer. Based on the information provided, the Board finds that the standards of this section have been met.
15. Freshwater wetlands. All potential freshwater wetlands, as defined in 30-A M.R.S.A. §4401(2-A), within the proposed subdivision have been identified on any maps submitted as part of the application, regardless of the size of these wetlands. Any mapping of freshwater wetlands may be done with the help of the local soil and water conservation district. Wetland areas have been identified on the plans. Based on the information provided, the Board finds that the standards of this section have been met.
16. River, stream or brook. Any river, stream, or brook within or abutting the proposed subdivision has been identified on any map submitted as a part of the application. For purposes of this section, "river, stream or brook" has the same meaning as in Title 38, Section 480-B, Subsection 9. [Amended; Effective. 11/27/89] There were no streams identified on the site. Based on the information provided, the Board finds that the standards of this section have been met.

[^0]: Rooftop solar panels at 53 Danforth

[^1]: Route: 0001X

[^2]: | Total |
 | :---: |
 | 0 |
 | 0 |
 | 0 |
 | 0 |
 | 0 |
 | 5 |

