- TO: Cumberland Planning Board and other interested parties
- FROM: Christina Silberman, Admin. Asst.
- DATE: November 2, 2017
 - RE: Orchard Road Subdivision tax map/lot number error

On review of the documents submitted for the Orchard Road Subdivision Preliminary Review that will be heard by the Cumberland Planning Board on November 21, 2017, I discovered that the incorrect lot number was used. Please note that this project is slated for Tax Map R08, Lot 59 and not Tax Map R08, Lot 59 B.

I have confirmed this with Will Haskell of Gorrill Palmer and he apologizes for the error.

The materials submitted reference Lot 59 B but it is actually Lot 59.

Relationships. Results.

Preliminary Application for Major Subdivision **Orchard Road** Cumberland, Maine

PREPARED FOR: TZ Properties, LLC

October 2017

SUBMITTED BY: Gorrill Palmer 707 Sable Oaks Drive Suite 30 So. Portland, ME 04106 207.772.2515

Responsiveness.

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

October 31, 2017

Ms. Carla Nixon Town Planner Town of Cumberland 290 Tuttle Road Cumberland, ME 04021

Subject: Orchard Road Subdivision Orchard Road Preliminary Major Subdivision Plan

Dear Carla,

TZ Properties, LLC has retained Gorrill Palmer to prepare and submit a preliminary subdivision application to the Planning Board for a proposed residential development on Orchard Road. The site is shown on the Assessor's Map R08, Lot 59B, is approximately 24.9 acres in size, and is located in the Rural Residential 2 (RR2) District. Figure I attached to this letter is a location map depicting the project site.

Site Description

The project site consists of Tax Map R08, Lot 59B as shown on the Cumberland Assessor's Map. The site is approximately 24.9 acres in size and has approximately 285 feet of frontage along Orchard Road.

The project site is currently undeveloped with moderate topography and generally slopes to the south. Abutting land uses include:

- > North Residential
- West Residential/Apple Orchard
- South Residential/Undeveloped
- East Residential

Project Description

The development of the site is anticipated to include construction of a public roadway to support a residential development of single family homes. The lots will be served by individual wells and subsurface wastewater disposal systems. The current configuration of the subdivision includes 10 single family house lots designed as a clustered residential development. Open space consisting of 8.13 acres of undeveloped land has been provided.

Access to the subdivision is proposed as a public roadway entering the property from Orchard Road. The proposed roadway is a dead end with a cul-de-sac and is approximately 1,500 feet long. Each proposed lot will have a driveway off of the subdivision road.

The roadway is anticipated to consist of a 22' wide paved roadway with a 4' wide paved byway along the southerly side of the roadway. The northerly side of the roadway will have a 2 foot paved shoulder in

cubed sections and a 2' gravel shoulder in non-curb sections. Lighting is not proposed for the roadway. Trash pickup is assumed to be municipal collection consistent with other Town roadways.

An abutting parcel northwest of the subject parcel has been designated on the plans as Lot A. The Applicant is currently in discussion with the owners of Lot A in order to come to an agreement for a land swap as shown in the plan set. The land swap will facilitate the creation of the proposed Lot 10. The agreement will be finalized before submission of the Final Subdivision application.

The project will generate less than 200 trip ends per day, which would therefore qualify under the Cumberland Subdivision Ordinance to be classified as a "Residential Access" roadway.

The final subdivision plan will contain the Fire Department notes, Clearing Limit notes, and Recording Limit note.

Major Subdivision Requirement Waivers

The applicant respectfully requests the following waivers from the ordinance requirements:

Trees 10" diameter or more – A waiver is requested to depict trees 10" in diameter or larger. 32.5% of the wooded site is proposed as open space which will preserve the existing woodland and a 75' no cut buffer is provided along the parcel boundary. The open space and buffers will protect the existing trees. The remainder of the site is subject to development therefore the location of the trees is not beneficial.

High Intensity Soil Survey – A waiver is requested for the High Intensity Soil Survey for this project, due to small scale of this project. Test Pits have been conducted on all lots to determine suitability for onsite septic systems and a Hydro-geologic study has also been conducted for the project. A copy of the test pit logs and hydro-geologic study are included in Attachment 7.

Soil boundaries and names superimposed on plot plan – Since a waiver of the High Intensity Soil Survey is requested, a waiver to put the soil boundaries on the plot plan is requested. A medium intensity soil survey is included in the Stormwater Management Report and the Erosion Control Report for this project.

Building locations – The Applicant proposes to construct the roadway, storm drainage, and electric service. The lots will be developed by the lot owners. Building locations will be proposed by the lot owners at the time of applying for building permits to develop each lot. The building envelope, potential subsurface disposal location, and potential well location is indicated for each lot on the subdivision plans. The applicant requests a waiver from the requirement to show building locations on the subdivision plans.

Location of temporary markers in field – A waiver is requested for location of temporary markers in field. The centerline of the proposed roadway has been marked.

Carla Nixon 10-31-17 Page 3

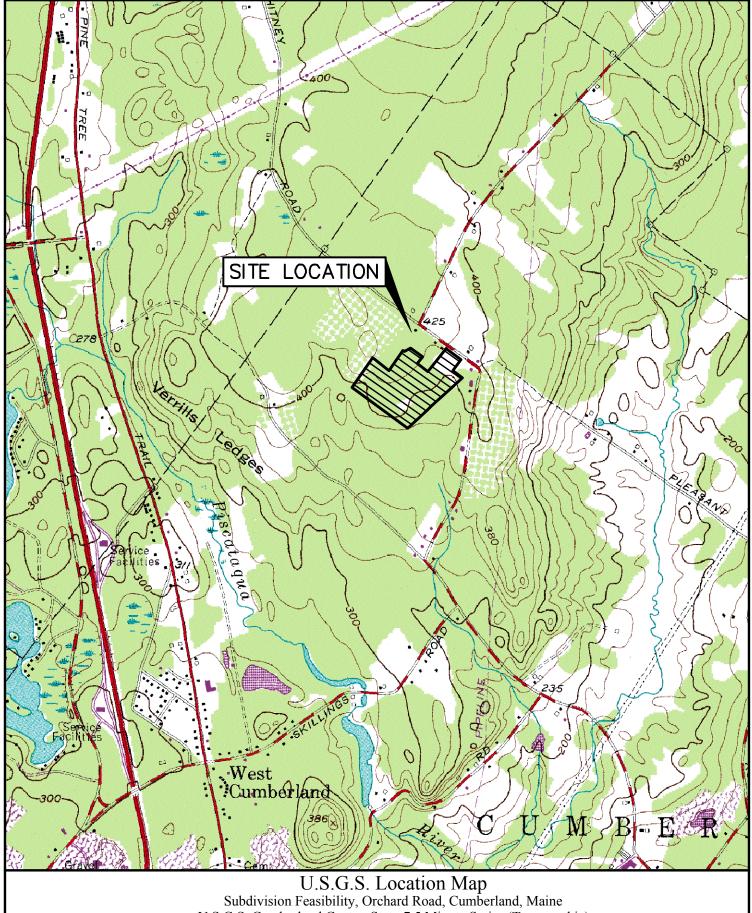
Conclusion

As required by the Ordinance, Gorrill Palmer on behalf of TZ Properties, LLC has submitted the application for Preliminary Subdivision Review. The project team looks forward to the Planning Staff and Board's review of this project.

Sincerely, Gorrill Palmer

WIC. Hashell

William C. Haskell, P.E. Principal


Enclosure

Copy: Zareh DerHagopian

WCH/jwaU:\3236.01 TZ Properties Orchard Rd Cumberland\P Applications\Local\Subdivision Appl\Preliminary Subdivision cover letter 10-18-17.doc

TZ Properties LLC 23 Stormy Brook Rd Falmouth, ME 04105 1298 Oet 19 247 25-80/440 andelas \$ 1000.00 PAY TO THE DOLLARS int UMB Bank N.A. Kansas City MO 64106 FOR Lasp 522 of 1:0440008041:4228401206367 MP 5

TZ Properties LLC 23 Stormy Brook Rd Falmouth, ME 04105 1297 Det 19/2017 25-80/440 ,1 \$ 850 N underland PAY TO THE ORDER OF -DOLLARS IND UMB Bank N.A. Kansas City MO 64106 For Applicate MP 1:0440008041:422840120¢3671 79 IONARC

U.S.G.S. Cumberland Center, State-7.5 Minute Series (Topographic)

Design: WCH	Date: OCT 2017	
Draft: LAN	Job No.: 3236.01	
Checked: WCH	Scale: None	
File Name: 3236-LOCMAP.dwg		

Relationships. Responsiveness. Results. www.gorrillpalmer.com 207.772.2515 Figure

1

October 19, 2017

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

Zareh DerHagopian TZ Properties 23 Stormy Brook Road Falmouth, ME 04105

RE: Designation of Agent

Dear Zareh,

As required by various approval agencies, please indicate by signing below that Gorrill Palmer is authorized to act as TZ Properties agent for the specific purpose of preparing and submitting permit applications on your behalf. This designation of agent is for the following development projects:

Orchard Road Subdivision

Sincerely,

Gorrill-Palmer Consulting Engineers, Inc.

C. Hal

William C. Haskell, PE Principal

The undersigned hereby gives Gorrill Palmer the authority to act as agent for TZ Properties for the specific purpose of preparing and submitting permit applications for the project(s) identified above.

Zareh Der Hagopian

10-19-17

Date

NARRATIVE

The following narrative addresses the approval criteria of the Town of Cumberland Subdivision Ordinance.

Chapter 250 Article | General Provisions

- A. <u>Pollution</u> The proposed subdivision will not result in undue water or air pollution
 - 1. The property is located a minimum of 390 feet above sea level and is not within a zone A 100-year floodplain. Attachment 5 contains a copy of the flood map for the project area.
 - 2. Test pits have been excavated to determine the adequacy of the on-site soils to safely dispose of wastewater. The test pit logs are included in Attachment 7.
 - 3. The site does not contain excessive slopes. Subsurface wastewater disposal systems will be appropriately sized to treat wastewater based upon the test pit results in Attachment 7.
 - 4. The existing stream will not be used for disposal of effluents.
 - 5. The subsurface wastewater disposal systems and well locations will conform to all applicable state and local regulations.
- B. <u>Sufficient Water</u> The lots will be served by individual wells, a hydrogeologic study is included in Attachment 7. A water sample was collected from an abutter's water system and submitted to Katahdin for testing. The results are included in Attachment 7.
- C. <u>Municipal Water Supply</u> Not Applicable
- D. <u>Erosion</u> The erosion and sedimentation control report contained in Attachment 10 addresses best management practices to limit the erosion of soil during the construction and post construction phases of the project.
- E. <u>Traffic A traffic assessment of the proposed project is included in Attachment 12.</u>
- F. <u>Sewage Disposal</u> Individual subsurface wastewater disposal systems are proposed for each lot. Attachment 7 contains subsurface investigation logs.
- G. <u>Municipal Solid Waste Disposal</u> The ten single family residences proposed for this subdivision are not anticipated to cause an unreasonable burden on the Town's ability to dispose of solid waste. The applicant proposes that the roadway be accepted by the Town and the utilization of municipal solid waste disposal.
- H. <u>Aesthetic, Cultural, and Natural Values</u> The subdivision is not anticipated to have an adverse impact on aesthetic, cultural, and natural values. A 75 foot wide no cut buffer is proposed along the project boundary, 8.13 acres of open space is proposed, and the State historic and natural resource agencies have been contacted to ensure that the project will not adversely affect historic or natural resources. The response from the Natural Areas Program and MDIF&W is included in Attachment 8. No rare botanical features within the project area or endangered, threatened, or special concern species are listed at the project site. The letter from MDIF&W suggests contacting the US Wildlife Service. An official species list from the US Wildlife Service is included in Attachment 8. The official species list notes that the Northern Long Ear Bat may be present in the project area. In order to avoid potential impacts to the Northern Long Eared Bat, tree cutting on the property will be prohibited during construction between June 1 and July 31. The Historic Preservation Commission contact letter is included in Attachment 8, response from the agency will be forwarded to the Town upon receipt.
- I. <u>Conformance with local ordinances and plans</u> The proposed subdivision has been designed to conform to the Town of Cumberland Subdivision Ordinance.
- J. <u>Financial and Technical Capacity</u> TZ properties, LLC has completed several projects in the Cumberland County area and has the financial capacity to complete the infrastructure construction for the proposed subdivision. A list of projects is included in

NARRATIVE

Attachment 2. The Applicant has hired Gorrill Palmer to prepare the subdivision plans and application. Gorrill Palmer has experience in permitting subdivisions in Cumberland. Attachment 2 contains a list of the consultants who have provided information used to assemble this application.

- K. <u>Surface Waters; Outstanding River Segments</u> The proposed subdivision will not adversely affect any surface water or outstanding river segment. The Erosion Control plan included with this application will provide strategies to avoid contamination of surface waters. The proposed stream crossing and wetland impacts will be submitted to, and conform to, the requirements of the MDEP and ACOE.
- L. <u>Groundwater</u> The proposed subdivision will not adversely affect groundwater. The proposed subsurface wastewater disposal systems will conform to the Maine Subsurface Wastewater Disposal Rules.
- M. <u>Flood Areas</u> Attachment 5 contains the Fema Flood Map for the project area. The site is not located within a Zone A 100-year flood zone.
- N. <u>Stormwater</u> The stormwater management report contained in Attachment 9 provides for stormwater control to limit the post development peak runoff from the 2-, 10-, and 25-year storm to predevelopment levels.
- O. <u>Freshwater Wetlands</u> Wetlands have been delineated and GPS located by TRC. The wetland memo is included in Attachment 11.
- P. <u>River Stream or Brook</u> A stream delineated by TRC is located at the northerly end of the parcel and is shown on the plans. The wetland memo in Attachment 11 discusses the stream.

Chapter 250 Article V General Requirements

250-19 Review and approval by other agencies

The project will require a Stormwater Permit, and NRPA Permit by Rule for a stream crossing from MDEP. The project will also require an ACOE Category 2 permit for the stream crossing and notification for wetland and vernal pool habitat impacts. Copies of the applications will be sent to the Town upon submission to the agencies. The approvals will be submitted to the Town prior to Final Plan submission.

250-21 Relationship of subdivision to community services

The applicant proposes the construction of the roadway, driveway aprons to the street line, electrical service from Orchard Road to the proposed transformers, construction of ditches and closed storm drain including driveway culverts, and construction of the two grassed underdrained soil filters. The applicant proposes that the Town accept the roadway as a Town road at which point the Town will be responsible for maintenance of the roadway and storm drainage within the right of way. The applicant proposes a Homeowners Association which will be responsible for the maintenance of the two grassed underdrained soil filters. A draft Homeowners Association document is included in Attachment 3. The ten proposed single family residences will have minimum impact to community services.

250-22 Retention of proposed public sites and open spaces

Open space consisting of 32.5 % of the parcel is proposed by the Applicant. The open space consists of woodland containing uplands and wetlands as well as the stream that traverses the northerly edge of the parcel.

250-23 Preservation of natural and historic features

Historic and natural resource agencies have been contacted as part of this application process. Attachment 8 contains a response from the Natural Areas Program and the MDIF&W. A request letter sent to the Historic Preservation Commission is also included. The Applicant will endeavor to preserve any natural or historic features identified by the agencies. Open space consisting of 32.5% of the parcel area has been proposed for preservation. The open space includes the stream at the northerly end of the property.

250-24 Land not suitable for development

The Applicant does not propose construction on land not suitable for development. The site is not located in a 100-year floodplain. Attachment 5 contains the flood map for the project area.

250-25 Blocks

Not applicable to this subdivision proposal.

250-26 Lots

The proposed lots have been laid out in substantial conformance with the Town Ordinance. All lots have the required minimum frontage for a cluster subdivision in the RR-2 zone. The parcel area adjacent to Orchard Road is part of the proposed open space and will provide a minimum 50 foot buffer.

250-27 Utilities

The lots will be served by individual subsurface wastewater disposal systems and wells. Electric service will be extended overhead across Orchard Road to a new pole. The electric service will be underground from the new pole to the transformers. An Ability to serve letter has been sent to CMP and is included in Attachment 6. The response will be forwarded to the Town upon receipt.

250-28 Water Supply

Individual drilled wells are proposed for the subdivision. Each lot owner will contract with a licensed well drilling company to have a well installed as part of the lot development. A well exclusion zone is depicted on the plans for each lot. Results of a water quality test performed on a sample from an abutter's water system is included in Attachment 7.

250-29 Sewage Disposal

Individual subsurface wastewater disposal systems are proposed for the lots. The lot owners will have their contractor construct each system during the lot development process. Attachment 7 contains the test pit information.

250-30 Trees, Open Spaces and Planting Screens

The Applicant proposes to dedicate 8.13 acres of the parcel as open space. As required by Section 315-43.B.4 of the Zoning ordinance, a minimum 75 foot buffer is proposed between the

NARRATIVE

clustered development and adjoining parcels. There are two proposed incursions into the buffer for the installation of stormwater management outlet pipes. The ordinance states that the buffer is intended to eliminate potential adverse impacts of the subdivision including glare, noise, and unsightly views of service areas. It is believed by Gorrill Palmer that the 4 inch diameter outlet pipes will be unobtrusive and will not result in adverse impacts.

List of Attachments

Attachment

- I. Subdivision Checklist
- 2. Consultants
- 3. Title/Right/Interest
- 4. Abutters
- 5. Flood Map
- 6. Utilities
- 7. Hydro-geologic Study
- 8. Natural Resource Letters
- 9. Stormwater
- 10. Erosion Control Report
- II. Wetland Memo
- 12. Traffic Assessment

Town of Cumberland Major Subdivision Submission Checklist BASED ON APPENDIX D MAJOR SUBDIVISION SUBMISSION REQUIREMENTS

Subdivision Name

Orchard Road Subdivision
Applicant's Name <u>TZ Properties, LLC</u>Date
<u>10-30-17</u>

Per Section 4.1 General Procedures, please note: The Code Enforcement Officer will first determine if the project will be classified as a major or minor subdivision. Classification will determine submission requirements.

YOU MUST REVIEW THE PROPOSED PLAN WITH THE CODE ENFORCEMENT OFFICER AND TOWN PLANNER PRIOR SUBMITTING APPLICATION TO RECEIVE THE APPROPRIATE CLASSIFICATION.

Major subdivision <u>x</u> Minor Subdivision

The following is intended to provide a summary of the submission requirements for subdivision review and for the provision of evidence for Findings of Fact. For precise requirements, please refer to the Town of Cumberland Subdivision Ordinance.

THE TOWN PLANNER SHALL DETERMINE IF THE APPLICATION COMPLETE OR INCOMPLETE. ONLY COMPLETE APPLICATIONS SHALL BE REVIEWED BY THE PLANNING BOARD.

Waivers: Please make a check in the *Waiver Request* column for any requested waivers. Attach a separate sheet citing the Subdivision Ordinance section number, description, and reason for request. (Section 15.1)

	i.e., plan #, narrative, binder section		
	Yes or No	Location of	Waiver
		Information?	Requested?
General Submissions:			
15 copies of plans and			
materials. All sheet sized	Vaa		
to be 24" x 36"	Yes		
1"=100' scale for general			
plan	Yes		
1"=40' scale for			
construction of required	Yes		
improvements			
Traffic Info?	Yes	Narrative	
Capacity to Serve letters?	Yes	Narrative	
Financial and Technical			
Capacity (Sec.14)	Yes	Narrative	

Specify below the location of information, i.e., plan #, narrative, binder section...

Sewer user permits	N1/A		
required? Status?	N/A		
Deed restrictions, if any,	N/A		
describe	IN/A		
Cover Sheet:			
Proposed subd. name &	Yes	Disco	
name of municipality	163	Plans	
Name & address of record			
owner, subdivider, and			
designer of preliminary	Yes	Plans	
plan			
Location Map:			
■ Scale 1"=1000'	Yes	Plans	
 Shows area 1000' 			
from property	Yes	Diana	
lines	100	Plans	
 All existing 			
subdivisions	Yes	Plans	
Approximate tract lines of		Diana	
adjacent parcels	Yes	Plans	
Approximate tract lines of			
parcels directly across	Yes	Plans	
street	165	T Idiiis	
<i>Location</i> of existing &			
proposed streets,			
easements, lot lines &			
bldg. lines of proposed	N/		
subd. & adjacent	Yes	Plans	
properties.			
Existing Conditions Plan			
Existing buildings	N/A		
Watercourses	Yes	Plans	
Legend	Yes	Plans	
Wetlands	Yes	Plans	
existing physical features			
(trees 10" diameter or	No		х
more.Stone walls			
Trail System?	N/A		
Subdivision Plan:			
Date of plan submission,			
true north & graphic scale	Yes	Plans	

Net residential acreage			
calculations	Yes	Plans	
Legend	Yes	Plans	
Trail (connecting?)		1 10113	
Widths of	N/A		
existing/proposed streets,			
easements & bldg. lines	Yes	Plans	
Names of			
existing/proposed streets,			
easements & bldg. lines	Yes	Plans	
Boundaries &			
designations of zoning			
districts, parks, public	Yes		
	163	Plans	
spaces			
Outline of proposed subd.	Yes	Plans	
w/ street system		1 10113	
Future probable street			
system of remaining	N/A		
portion of tract.			
Opportunities for	N1/A		
Connecting Road(s)	N/A		
(13.2D)			
Space & setback of	Yes	Plans	
district			
Classification of road	Yes	Plans	
Width of road(s)	Yes	Plans	
Drainage type (open,	Maria		
closed, mix)	Yes	Plans	
Type of byway provided	Yes	Diana	
(8.4D)	Tes	Plans	
Names of adj.			
subdivisions	N/A		
Names of owners of		Diaraa	
record of adjacent acreage	Yes	Plans	
Any zoning districts	Vcc		
boundaries affecting subd.	Yes	Plans	
Location & size of			
existing or proposed			
sewers, water mains,	Vac	Yes	
culverts, hydrants and	Yes	103	
drains on property			
Connections w/existing			
sewer or water systems	N/A		
Private water supply			
shown	Yes	Plans	
Private septic shown	Yes	Plans	
Hydro-geologic study	Yes	Narrative	
Jaro Beorogie Study	162		

(option for Board)			
Test pit locations	Yes	Plans	
Well locations	Yes	Plans	
Signature & lic. # of site		FIGUS	
evaluator	Yes	Narrative	
Existing streets: location,			
name(s), widths w/in and			
abutting	Yes	Plans	
Proposed streets: location,		Diana	
name(s), widths w/in and	Yes	Plans	
abutting			
The above for any			
highways, easements,			
bldg. lines, alleys, parks,	Yes	Plans	
other open spaces w/in	100		
and abutting			
Grades & street profiles			
of all streets, sidewalks or	Vez		
other public ways	Yes	Plans	
proposed			
2'contour lines	Yes	Plans	
High intensity soil survey			
by cert. soil scientist	No		X
Soil boundaries & names			
superimposed on plot plan	No		Х
Deed reference & map of			
survey of tract boundary			
by reg. land surveyor tied	Vaa	Plans	
to established reference	Yes	Fidils	
points			
Surface drainage or			
stormwater mgmt plan			
w/profiles & cross			
sections by a P.E.	Yes	Plans/Narrative	
showing prelim. design	1 63	FIANS/INAITALIVE	
and conveyances			
Proposed lot lines w/			
dimensions and suggested	No		
bldg. locations.	No		Х
Location of temp. markers			
in field	No		х
All parcels proposed to be			
dedicated to public use			
and conditions of such.	N/A		
Location of all natural			
		5	
features or site elements	Yes	Plans	
to be preserved			
Street lighting details	N/A		
Landscaping and grading			
plan including natural	Yes	Plans	
features to be preserved			

Survey stamped by P.E.	Yes	Plans	
Soil surveys w/# of soil			
scientist	N/A		
Septic plan w/ # of prof.			
site evaluator	Yes	Narrative	
Geological evals w/ reg.			
geologists number	N/A		
Architect's seal	N/A		
For Rt. One: 75'	-		
undisturbed buffer			
applicable to all buildings,	N/A		
structures, parking areas,	1.177		
drainage facilities and			
uses.			
Open Space?	Yes	Plans	
Any part of parcel in a			
shoreland zone?	No		
Flood Map Number and			
rating?	Yes	Plans	
Stormwater Report?	Yes	Narrative	
Rivers, ponds, wetlands?	Yes	Plans	
Historic, archeological	100	Fians	
features?	Yes	Narrative	
Solid waste disposal?	Yes	Narrative	
		Narrative	
Required Notes on Plan:			
Fire Department notes	No		
Clearing limits note	No		
<i>Re: approval limit of 90</i>	INC		
days before recording or			
null p. 10	No		
Final Plan Submissions:	See		
	Appendix		
	D		
Actual field survey of			
boundary lines w/			
monumentation shown			
Assessor's approval of			
street names and			
assignment of lot			
numbers.			
Designation of all open			
spaces w/ notes on			
ownership			
Copies of declarations,			
agreements or other			
documents showing the			
manner in which open			
manner m which open			1

be held and maintained.		
Written offer for any		
conveyance to the Town		
of open space or		
easements along with		
written evidence that the		
Council is willing to		
accept such offer		
Evidence of Outside		
Agency Approvals		

As per Section 7.2 - REVIEW AND APPROVAL BY OTHER AGENCIES:

A. Where review and approval of any subdivisions or site plan by any other governmental agency is required, such approval shall be submitted to the Planning Board in writing prior to the submission of the Final Plan.

Please list below all outside agency approvals that are required for this subdivision.

Maine Department of Environmental Protection: *List type of permit(s) required (e.g., SLODA, NRPA (tier type?), Maine Construction General Permit, etc.)* Stormwater Permit/Construction General Permit, NRPA Permit by rule for stream crossing

US Army Corps of Engineers: Category 2 for stream crossing, wetland impact, vernal pool habitat impacts.

Maine Department of Transportation: *List type of permit(s) required.* N/A

Maine Department of Inland Fisheries and Wildlife:

N/A

Other: (List)

Project Consultants

Civil Engineer

Gorrill Palmer 707 Sable Oaks Drive Suite 30 South Portland, ME 04106

Surveyor

Titcomb Associates 133 Gray Road Falmouth, ME 04105

Site Evaluator

David Chapman Sebago Technics 75 John Roberts Road Suite IA South Portland, ME 04106

Wetland Scientist

Lauren Leclerc TRC 6 Ashley Drive Scarborough, ME 04074

Projects

The following list contains projects completed by TZ Properties, LLC and by Zareh DerHagopian, and Tony Procida, the principals of TZ Properties.

Sorrento Condominiums – Gray, Maine (TZ Properties) 6 buildings – 12 units total currently completing construction

Back Cove Flats – 15 Morse Street, Portland, Maine (Zareh) 3 unit condominium – completed 2017

Whitney Ridge – Gray, Maine (Tony) 3 duplex units – completed 2015

Farmhouse Lane – Gray, Maine (Tony) I duplex – completed 2014

Single Family Residence Kenneth Street, Portland, Maine (Zareh) Completed 2013

Single Family Residence Wilkie Street, Portland, Maine (Zareh) Completed 2011

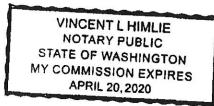
QUITCLAIM DEED WITH COVENANT (Maine Statutory Short Form)

KNOW ALL MEN BY THESE PRESENTS, that Virginia H. Ward, of 1129 Zylstra Rd, Coupeville, Washington, in consideration of One Dollar (\$1.00) and other good and valuable consideration paid by TZ Properties, LLC, a Maine limited liability company with offices at 23 Stormy Brook Rd, Falmouth, Maine, the receipt whereof is hereby acknowledged, does hereby GIVE, GRANT, BARGAIN, SELL AND CONVEY unto the said TZ Properties, LLC, its successors and assigns forever, with Quitclaim Covenants, as follows:

A certain lot or parcel of land, together with any improvements thereon, situated on the westerly side of Orchard Road, so-called, in the Town of Cumberland, County of Cumberland and State of Maine, being more particularly described in the attached Exhibit A.

Meaning and intending to convey, and hereby conveying, a portion of that property described in a deed from Virginia H. Ward to Frances June Ward, April 29, 2002 and recorded in Cumberland County Registry of Deeds at Book 17716, Page 53. Frances June Ward died December 31, 2005, her estate having not been probated, leaving no widower and Virginia H. Ward as her only child and sole heir at law,

IN WITNESS WHEREOF, Virginia H. Ward has hereunto placed her hand and seal this 27 day of July 2017.


Witness

State of __ L) County of

Virginia H. Ward

7-27 , 2017

Then personally appeared the above named Virginia H. Ward and acknowledged the foregoing instrument to be her free act and deed.

Amlie

Notary Public/Attorney-at-Law

Exhibit A

Description of Large Ward "Back Lot" On the Westerly Side of Orchard Road Cumberland, Maine

A certain parcel of land, located on the westerly side of Orchard Road in Cumberland, County of Cumberland, State of Maine, said parcel being a portion of those premises depicted on a plan entitled, "BOUNDARY SURVEY REMAINING LAND NOW OF VIRGINIA H. WARD dated January 18, 2017 conducted by Sitelines, PA and recorded in Cumberland County Registry of Deeds at Plan Book 217, Page 39 and more particularly described as follows:

BEGINNING at a 5/8 inch rebar set on the assumed westerly right of way line of Orchard Road at the most easterly corner of the Lilac LLC lot shown on said plan;

THENCE S 40° 40' 29" E on said road line, a distance of 285.49 feet to a 5/8 inch rebar set at land now or formerly of Philip J. Terison;

THENCE S 49° 19' 31" W along said Terison lot, a distance of 209.91 feet to a 5/8 inch rebar set;

THENCE S 40° 40' 29" E along said Terison lot, a distance of 179.00 feet to a 5/8 inch rebar set;

THENCE S 60° 36' 25" W along the stone wall marking land of Gordon, a distance of 234.00 feet to a survey pin with cap #1328;

THENCE S 60° 51' 11" W along said stone wall, marking land of Parker, a distance of 395.88 feet to a pin;

THENCE S 60° 39' 40" W along said stone wall, marking land of Stone, a distance of 99.90 feet to a pin;

THENCE S 60° 32' 58" W along said stone wall, marking land of McCabe, a distance of 396.73 feet to a 1/2 inch rebar;

THENCE N 40° 37' 30" W along land now or formerly of the Suzanne L. McCormack Trust, a distance of 1036.60 feet to a rebar set;

THENCE N 47° 14' 45" E along land now or formerly of Carl Terison, Jr, a distance of 548.95 feet to a rebar set;

THENCE S 38° 15' 34" E along land formerly of Allen, a distance of 314.44 feet to a rebar set;

THENCE N 48° 55' 44" E along said Allen lot, a distance of 368.95 feet to a point on the south side of the driveway;

THENCE S 41° 04' 16" E a distance of 20.00 feet;

THENCE N 76° 44' 18" E a distance of 111.58 feet to a rebar set at the most westerly corner of the Christopher S. Neagle lot, as shown on said plan;

THENCE S 40° 40' 29" E along said Neagle lot, a distance of 220.01 feet to a rebar set;

THENCE S 51° 12' 22" W along the aforesaid Lilac LLC lot, a distance of 128.27 feet to a rebar set;

THENCE S 38° 47' 38" E along said Lilac LLC lot, a distance of 200.50 feet to a rebar set;

THENCE N 51° 12' 22" E along said Lilac LLC lot, a distance of 445.02 feet to the **POINT OF BEGINNING.**

<u>The Above Parcel Containing 24.97 ac. ± Total</u>, being a portion of those premises conveyed to Frances June Ward by deed dated April 29, 2002 and recorded in Cumberland County Registry of Deeds at Book 17716, Page 053.

All survey pins set are 5/8" rebar with an aluminum cap bearing the name Smith and PLS 1175.

Received Recorded Resister of Deeds Jul 31,2017 02:45:56P Cumberland County Nancy A. Lane

DECLARATION OF PROTECTIVE COVENANTS AND COMMON EASEMENTS ORCHARD ROAD SUBDIVISION TOWN OF CUMBERLAND, COUNTY OF CUMBERLAND, STATE OF MAINE BY TZ PROPERTIES, LLC

THIS DECLARATION dated this _____ day of _____, 2017, by TZ Properties, LLC, a Maine limited liability company with a mailing address of (hereinafter referred to as the "Declarant").

WITNESSETH:

WHEREAS, the Declarant owns certain real property in the Town of Cumberland, Cumberland County, State of Maine, as described on **Exhibit A** attached hereto and as delineated on a plan entitled "Orchard Road Subdivision, Cumberland, Maine" prepared for Declarant by Gorrill Palmer and dated October 2017, and recorded in the Cumberland County Registry of Deeds in Plan Book xxx, Page xxx (the "Plan"), which subdivision consists of Ten (10) lots numbered on the Plan as 1-10 and also a parcel of land designated "Open Space." Lots 1 through 10 inclusive shall hereinafter be referred to as the "Lots," and together with the appurtenant Common Open Space easements shown on the Plan or referenced in this Declaration hereinafter referred to as the "Property." Declarant proposes to develop and improve the Property in accordance with the Plan; and

WHEREAS, Declarant desires to assure quality standards for the orderly development of the Property and to promote the interest and welfare of each owner of a part of the Property and therefore desires to subject the Property to protective covenants and common easements as set forth hereinafter.

WHEREAS, Declarant desires to subject the Property to protective covenants and common easements as set forth hereinafter to incorporate the conditions of the Town of Cumberland Planning Board approval for the subdivision of the Property.

NOW, THEREFORE, Declarant hereby declares that the Property is and shall be owned, occupied, improved, transferred, leased and otherwise used and disposed of subject to the protective covenants and common easements set forth herein, all of which are declared to be in furtherance of a uniform scheme of mutual equitable servitudes upon each and every portion thereof, in favor of each and every other portion thereof, and to create reciprocal rights and privity of contract and estate between all persons acquiring or owning an interest in any portion thereof, which protective covenants and common easements shall be determined to run with the land and be a burden and benefit upon and to, and be enforceable by, all persons having any interest in any portion of the Property, their heirs, successors and assigns.

<u>ARTICLE I</u> <u>DEFINITIONS</u>.

1. <u>Association:</u> "Association" shall mean and refer to *Orchard Road Subdivision Homeowners Association*, its successors and assigns, a non-profit, non-stock Maine corporation, to be formed by Declarant pursuant to the terms of Article V below. 2. <u>Building:</u> "Building" shall mean and refer to any dwelling, garage, or storage structures or other improvement now or hereafter constructed on a Lot.

3. <u>Common Expenses:</u> "Common Expenses" shall mean and refer to expenditures made by or financial liabilities of the Association, together with any allocations to capital or other reserve accounts.

4. <u>Lot</u>: "Lot" shall mean each whole Lot or any interest therein as joint tenants or tenants in common.

5. <u>Remaining Land</u>: "Remaining Land" shall mean and refer to any land not a Lot and all improvements thereon, including without limitation the roads, curbing, and storm water drainage fixtures and improvements, all as shown on the Plan. Remaining Land also shall include the Common Open Space, which shall be owned as tenants-in-common by each of the Lot Owners.

6. <u>Easement Areas</u>: "Easement Areas" shall mean and refer to all of the easements areas shown on the Plan or described below or on Exhibit A attached hereto that burden any Lot or Lots or that benefit the Association and all of the Lots, including without limitation utility easements, pedestrian access to open space easement, vehicle and pedestrian access easements in the roadway, forested buffer easements, drainage easements, and and all improvements on, in, across or under such easement areas including pavement, curbing, landscaping, storm water drainage fixtures and improvements.

7. <u>Member</u>: "Member" shall mean and refer to those persons entitled to membership in the Association as determined by the Bylaws of the Association and as set forth herein.

8. <u>Owners</u>: "Owners" or in the singular, "Owner", shall mean and refer to the record owner or owners of fee simple title in and to any Lot, and shall include the Declarant so long as it owns any Lot or any other portion of the Property, but shall not include any person or legal entity owning an interest merely as security for an obligation.

<u>ARTICLE II</u> <u>PROTECTIVE COVENANTS AND RESTRICTIONS</u>.

Each conveyance by Declarant, its successors and assigns, of any Lot, and all subsequent conveyances of any Lot, whether directly or by operation of law, shall be subject to the following:

1. <u>No Commercial Uses</u>: Subject to the rights of the Declarant to develop and sell the Lots and such other rights of the Declarant as are set forth in this Declaration, each Lot shall be used only for residences, and no commercial enterprise of any nature or description shall be conducted or maintained on any portion of the Property, except that Lots may be used for a home office for telecommuting purposes by the Owners of such Lots provided that no customer, client or employee visits are made to the Lots incident to such commercial use.

2. <u>Buildings and Lot Improvements</u>: One single family residential structure shall be constructed or kept on any Lot. Each such Lot shall be improved subject to the following restrictions:

(a) No structure shall be constructed outside of the building envelope shown on the Plan, which building envelope is determined by the application of the Town of Cumberland setback requirements. No sheds or other storage structures, whether permanent or temporary, shall be installed or placed on any Lot except in furtherance of Declarant's construction activities. All antennae or satellite dishes to be installed on a Lot shall first be approved in writing by the Declarant, or after the sale of the last Lot by Declarant, the Association board; such approval and any conditions imposed in connection therewith are subject to the rights and limitations imposed by Federal law.

- (b) Any additions to a structure after initial construction that increase the footprint, that materially change the exterior appearance, or that require structural modification to the structure must be approved by the Declarant, or after the Declarant has conveyed the last Lot, by the Board of Directors of the Association, in writing prior to commencement of construction of such additions or modifications.
- (c) Declarant reserves to itself, its successors and assigns, the exclusive right to erect, place and maintain such facilities in or upon any portion of the Property as in its sole discretion may be necessary or convenient while selling the Lots or portions thereof, selling or constructing residences and other improvements upon the Property. Such facilities shall include, but are not limited to, sales and construction offices, storage areas, model units, signs, and portable toilet facilities.

3. <u>Damage of Destruction</u>: Any Building on any Lot that is destroyed or damaged in whole or in part by fire, windstorm, or other casualty promptly must be rebuilt or all debris removed and the affected portion of the Lot restored to its natural condition without delay.

4. <u>Compliance with Governmental Regulations</u>: Owners shall occupy and maintain the Lots in accordance with the rules, regulations, ordinances, and statutes enacted by governmental entities having jurisdiction over the Property, including without limitation the terms and conditions imposed by the Town of Cumberland Planning Board in connection with the subdivision approval for the Property on xxx, and xxx (the "Town Approvals"), and as reflected on the Plan.

5. Maintenance of the Remaining Land and Easement Areas: The Association shall bear all cost (subject to the right to assess lots as provided below) and responsibility of operation, upkeep, maintenance, repair and replacement of any Remaining Land and Easement Areas, including without limitation any necessary routine maintenance and repair of the roads, storm drainage and grassed underdrained soil filters, landscaping, curbing, utility wires and conduits, development signage or other common area improvements. The Association shall also obtain and maintain adequate commercial general liability insurance on said Remaining Land and with respect to the Easement Areas, which insurance shall be obtained on an occurrence basis in an amount not less than \$5,000,000 combined single limit. Until and only until conveyance of any portion of the Remaining Land to the Association, the Declarant shall undertake the maintenance responsibilities of the Association with respect to the Remaining Land and Easement Areas; provided, however, the Association shall be unconditionally obligated to accept conveyance of the Remaining Land and Easement Areas or any part thereof, and Declarant may record a deed or deeds to the Association for such areas without further action by the Association. The Remaining Land shall be conveyed to the Association by Declarant at any time prior to or contemporaneously with Declarant conveying out the last Lot of the Property, with the timing of such conveyance to be in Declarant's sole discretion. Upon any such conveyance to the Association, the Declarant shall be relieved of all obligations under this paragraph with respect to the land conveyed.

6. <u>Animals</u>: No poultry, swine, livestock or other animals shall be kept on a Lot or otherwise on the Property, except household pets of the kind and number normally housed in a

residence. There shall be no exterior pet fencing, shelters, or caging. No boarding of dogs, cats or other household pets shall be conducted on a Lot.

7. <u>Prohibited Vehicles:</u> Except in the development and sale of the Lots by the Declarant and construction of houses and other Buildings by Owners, no business or commercial vehicle or vehicle of similar nature shall be brought upon, or be maintained, or be permitted to remain on the Property except that a business or commercial vehicle regularly used by an Owner in his or her occupation may remain on a Lot. No junk automobiles or other vehicles that do not display a current State of Maine motor vehicle inspection sticker may be kept or maintained on the Property unless parked in a garage or storage shed.

8. <u>Prohibited Activities</u>: No hunting or use of firearms, air guns, or bows shall be allowed anywhere on the Property.

9. <u>Rubbish and Debris</u>: Except during the initial construction of a Building, rubbish and debris shall be stored between pickups in the garage in sanitary receptacles with sealing covers or as required by Town of Cumberland ordinances or regulations and shall be placed curbside for pickup in such receptacles with the covers placed tightly over the receptacles and promptly restored in a garage after rubbish pickup.

10. <u>Exterior Lighting:</u> Any exterior lighting shall be directed to illuminate only the ground or the Buildings on the Lot and shall be installed such that no light is directly visible from any other part of the Property.

ARTICLE III DURATION.

The protective covenants, common easements and other provisions of this Declaration as set forth herein and as may be amended from time to time as provided below in Article X, shall run with the land and burden the Property and shall inure to the benefit of and be enforceable by the Declarant, the Association, and any other Owner of any portion of the Property, their respective legal representatives, heirs, successors or assigns, in perpetuity.

<u>ARTICLE IV</u> <u>DECLARANT'S RESERVED RIGHTS.</u>

The conveyance of the Lots to Owners shall be subject to the following rights reserved by the Declarant until completion of the construction, marketing and sale of all Lots:

1. To change the size, number, dimension, and location of Lots and other improvements owned by the Declarant, subject to the requirement that Declarant obtain necessary approval from the Town of Cumberland planning authority. The foregoing change or changes shall be effective upon the recording by the Declarant of an amendment to this Declaration, no other signatures being necessary on such amendment, and/or the recording by the Declarant of an amended subdivision plan indicating the changes made;

2. To locate on the Property, even though not depicted on the Plan, and grant and reserve easements and rights of way for the installation, maintenance, repair, replacement and

inspection of utility lines, wires, pipes, conduits and facilities, including, but not limited to, water, electric, telephone, cable and sewer;

3. To connect with and make use of utility lines, wires, pipes and conduits located on the Property for construction and sales purposes, provided that the Declarant shall be responsible for the cost of services so used;

4. To use the roads shown on the Plan and access easements appurtenant to the Property for ingress and egress to the Property or any portion thereof for all purposes including, but not limited to development and construction of a residential subdivision and use the Property for the storage of materials used in the construction of the residences and improvements on the Lots and infrastructure on the Property and equipment used in the completion of the project;

5. To install and maintain signs and lighting for marketing and sales purposes; and

6. To do all things reasonably necessary to facilitate the development of the Property and the marketing and sale of the Lots.

Declarant further reserves from the land described in Exhibit A attached hereto a perpetual easement in gross, assignable to any other party or parties in part or in whole, for vehicular and pedestrian access on and all utilities under, across or over the 50' wide roadway right-of-way as shown on the Plan. The foregoing reserved easement may benefit any additional land and any number of additional lots or dwellings without exceeding the scope of or overburdening the reserved easement rights. The foregoing reserved easement is perpetual in nature and does not expire upon the sale of the Lots by Declarant.

<u>ARTICLE V</u> HOMEOWNERS ASSOCIATION.

On or about the date of execution and recording of this Declaration, there will be formed *Orchard Road Subdivision Homeowners Association*, a non-profit, non-stock corporation organized under the laws of the State of Maine (the "Association"). Each Owner or Owners of a Lot, including the Declarant prior to the conveyance of each Lot, shall automatically become and be a member of the Association as long as said Owner(s) continues as record owner of a Lot. Upon termination of the interest of an Owner in a Lot, the Owner's membership and any interest in the Association shall automatically terminate and transfer and inure to the next successive record owner of the Lot. Each Owner shall be bound by the Bylaws of the Association, as the same may be amended from time to time, and each Owner shall comply strictly with such Bylaws. No holder of a mortgage on a Lot shall be considered as an Owner until such holder shall have acquired title to such Lot by foreclosure or deed in lieu of foreclosure. With respect to Association governance matters requiring a vote of the Owners, each Lot shall have One (1) vote.

<u>ARTICLE VI</u> ASSESSMENTS FOR COMMON EXPENSES.

1. Upon ratification of the budget for Common Expenses (as defined herein), the Association shall cause to be sent to each Owner a statement showing such Owner's share of the Common Expenses. The Common Expenses shall include, without limitation, the costs necessary to own, operate, manage, maintain, repair and replace the Remaining Land and Easement Areas and to operate, maintain, repair and replace the roads, curbing, landscaping, signage, drainage swales,

grassed underdrained soil filter, and all structures and equipment related or connected thereto. Assessments for Common Expenses shall be billed on or about the first day of each quarter. All sums so assessed and billed shall become due no later than 30 days after the date of mailing or delivery of each bill. The Members of the Association may from time to time at special meetings levy additional assessments, in accordance with the terms of the Bylaws.

2. Assessments authorized and billed by the Association shall be a charge on the Lot and shall be a continuing lien upon the Lot upon which such assessment is made. If the assessment to an Owner shall not be paid within Thirty (30) days after the date when due, then said assessment shall be delinquent and shall, together with interest at the rate of one percent (1%) per month or any portion thereof, costs of collection and attorneys' fees, become a continuing lien on the Lot owned by the delinquent Owner, which lien shall bind the Lot with the Building and improvements thereon, as well as the delinquent Owner, his heirs, devisees, successors, personal representatives and assigns, without the necessity of filing any document of record. Such lien may be enforced and foreclosed by the Association in the manner provided by applicable law for the foreclosure of real estate mortgages. The lien for unpaid assessments established hereby shall be prior to all liens and encumbrances on the Lot other than (i) the first mortgage recorded prior to the date on which the assessment that is sought to be enforced becomes delinquent, (ii) any second mortgage in favor of Declarant, (iii) liens for real estate taxes and other governmental/municipal assessments or charges against the Lot, or (iv) any other lien that according to law takes priority over existing liens pursuant to any statute. All such assessments, in addition to being a lien, shall also constitute the personal liability of the Owner of the Lot so assessed at the time of the assessment. In the collection of any assessment, the defaulting Owner also shall pay all of the Association's costs of collection, including attorneys' fees.

ARTICLE VII EASEMENTS.

The Lots and the Remaining Land are and shall be subject to all of the conditions, restrictions, easements and reservations set forth on the Plan, as it may be amended from time to time, and as more fully described below, and all Owners shall be bound by all of said conditions, restrictions, easements and reservations.

1. "<u>Common Open Space</u>": An easement for maintenance and use of the land for passive recreational activities such as walking, running, snowshoeing, and Nordic skiing.

2. "<u>Roadway Access and Utility Easement</u>": An easement for access by pedestrians and vehicles to and from the Lots and including the right to construct, maintain, repair and replace the roadway, including without limitation the gravel, pavement and curbing therefor. Also an easement to construct, install, use, repair, maintain and replace above and/or below ground any and all utility lines, pipes, conduits, wires, poles, guys, transformer and juncture boxes including without limitation those necessary for the provision of sewer, water, electricity, telephone, cable television, data and other communication services, including the right to enter the easement area at any time and from time to time with workers and equipment to exercise the rights reserved pursuant to this easement, including without limitation the removal of stumps and roots, the construction decorative walls and columns, and the alteration of the grade of the earth, including the right to maintain and replace all of the foregoing, including the right to enter the easement area at any time and from time to time with pedestrians, motor vehicles and equipment to exercise the rights reserved pursuant to this easement. Declarant reserves for itself and its successors and assigns the right to dedicate and convey the right-of-way to the Town of Cumberland for all public purposes. 3. <u>"Drainage Swales"</u>: An easement for the installation, maintenance, repair, and replacement of level lip spreaders and drainage swales for the purpose of treating storm water runoff, which easement includes access thereto with workers and equipment for such purposes.

4. <u>"Winter Maintenance Easement":</u> An easement across the roadway for the Town of Cumberland to use for all purposes in connection with the plowing and snow removal activities on the roadway right-of-way, in the event that the roadway is offered and accepted by the Town of Cumberland for winter maintenance purposes.

ARTICLE VIII MAINTENANCE OF STORMWATER MANAGEMENT FACILITIES AND RESERVED SEPTIC AREAS

The Association shall comply with the recommendations and requirements contained in the "Stormwater management report and Erosion and Sedimentation Control Report for Orchard Road Subdivision, Cumberland, Maine" prepared by Gorrill Palmer for Declarant and dated _______, 2017, as such maintenance plan has been approved by the Town of Cumberland Planning Board, which recommendations and requirements are incorporated into this Declarant as if set forth herein.

ARTICLE IX RESTRICTED BUFFER AREAS.

To preserve the "75'No Cut Buffer." areas shown on the Plan (hereinafter referred to as the "Restricted Buffer Areas"), the Restricted Buffer Areas shall be maintained as follows:

The Restricted Buffer Areas are and shall forever be held, transferred, sold, conveyed, occupied and maintained subject to the conditions and restrictions set forth in this Article IX of the Declaration (the "Restrictions"). The Restrictions shall run with the Restricted Buffer Areas and shall be binding on all parties having any right, title or interest in and to the Restricted Buffer Areas, or any portion thereof, and their heirs, personal representatives, successors, and assigns. Any present or future owner or occupant of the Restricted Buffer Areas or any portion thereof, by the acceptance of a deed of conveyance of all or part of the Restricted Buffer Areas or an instrument conveying any interest therein, whether or not the deed or instrument shall so express, shall be deemed to have accepted the Restricted Buffer Areas subject to the Restrictions and shall agree to be bound by, to comply with and to be subject to each and every one of the Restrictions hereinafter set forth.

- 1. <u>Restrictions on Restricted Buffer Area</u>. The Restricted Buffer Area must remain undeveloped in perpetuity. To maintain the ability of the Restricted Buffer Area to filter and absorb stormwater, the use of the Restricted Buffer Area is hereinafter limited as follows.
- a. No soil, loam, peat, sand, gravel, concrete, rock or other mineral substance, refuse, trash, vehicle bodies or parts, rubbish, debris, junk waste, pollutants or other fill material may be placed, stored or dumped on the Restricted Buffer Area, nor may the topography of the area be altered or manipulated in any way;

- b. Any removal of trees or other vegetation within the Restricted Buffer Area must be limited to the following:
 - (i) No purposefully cleared openings may be created and an evenly distributed stand of trees and other vegetation must be maintained. An "evenly distributed stand of trees " is defined as maintaining a minimum rating score of 24 points in any 50 foot by 50 foot square (2500 square feet) area, as determined by the following rating scheme:

Diameter of tree at 4 1/2 feet above ground level	Points
2-4 inches	1
4-8 inches	2
8-12 inches	4
>12 inches	8

Where existing trees and other vegetation result in a rating score less than 24 points, no

trees may be cut or sprayed with biocides except for the normal maintenance of dead, wind- blown or damaged trees and for pruning of tree branches below a height of 12 feet provided two thirds of the tree's canopy is maintained;

- (ii) No undergrowth, ground cover vegetation, leaf litter, organic duff layer or mineral soil may be disturbed except that one winding path, that is no wider than six feet and that does not pro- vide a downhill channel for runoff, is allowed through the area;
- c. No building or other temporary or permanent structure may be constructed, placed or permitted to remain on the Restricted Buffer Area, except for a sign, utility pole or fence;
- d. No trucks, cars, dirt bikes, ATVs, bulldozers, backhoes, or other motorized vehicles or mechanical equipment may be permitted on the Restricted Buffer Area;

Any activity on or use of the Restricted Buffer Area inconsistent with the purpose of these Restrictions is prohibited.

2. <u>Binding Effect</u>. If a Restricted Buffer Area is at any time owned by more than one owner, each owner shall be bound by the foregoing restrictions to the extent that any of the Restricted Buffer Area is included within such owner's property.

<u>ARTICLE X</u> <u>AMENDMENTS.</u>

This declaration may be amended at any time and from time to time by written instrument duly executed by the Owners of record of six of the ten Lots; provided, however, that at any time during which the Declarant owns one or more Lots, no amendment shall be effective unless the written consent of the Declarant to such amendment is obtained and further provided that no provisions of this Declaration required as conditions of approval for the subdivision of the Property may be terminated or modified without the approval of the planning authority of the Town of Cumberland. Any such amendment shall be recorded in the Cumberland County Registry of Deeds.

ARTICLE XI GENERAL PROVISIONS.

1. <u>Enforcement</u>. By the acceptance of the deed to a Lot, each Owner covenants and agrees for himself, his heirs, devisees, successors, personal representatives and assigns, to comply with the covenants and restrictions set forth in this Declaration. Any failure to so comply shall be grounds for an action against the Owner, his heirs, devisees, successors, personal representatives and assigns, to recover damages or for injunctive relief or both. Such action may be maintained by the Association, the Declarant or by any aggrieved Owner. Notwithstanding anything in this Declaration to the contrary, the Association <u>shall</u> enforce the provisions of this Declaration that satisfy the conditions of the Town Approvals. In the event the Association, Declarant or an Owner shall substantially prevail in any such action, they shall be entitled to recover attorneys' fees and related expenses incurred in enforcing the terms of this Declaration. Nothing herein shall require the Declarant to enforce any of the covenants and restrictions in this Declaration.

2. <u>Waivers</u>. No delay or omission on part of the Declarant, the Association, or any Owner in enforcing the covenants set forth herein shall be construed as a waiver of any right to enforce or seek such remedy or acquiescence in such breach.

3. <u>Severability</u>. In the event any one or more of the provisions of this Declaration shall be found for any reason by a court of competent jurisdiction to be unenforceable or null and void, such judgment or decree shall not affect, modify, change, abrogate or nullify any other provision of this Declaration.

4. <u>Pronouns</u>. Wherever used, the singular number shall include the plural, the plural the singular, and the use of any gender shall be applicable to all genders.

IN WITNESS WHEREOF, TZ Properties, LLC, has caused this Declaration to be executed by Anthony J. Procida, its duly-authorized Manager, as of the day and year first above written.

WITNESS:

TZ PROPERTIES, LLC

By:

Anthony J. Procida, its Manager

STATE OF MAINE COUNTY OF CUMBERLAND

_____, 2017

Personally appeared before me the above-named Anthony J. Procida, Manager of TZ Properties, LLC, as aforesaid, and acknowledged the foregoing to be his free act and deed in said capacity and the free act and deed of said company.

Print name: Notary Public/Attorney-at-Law

<u>EXHIBIT A</u>

[ADD PERIMETER DESCRIPTION OF PROPERTY FROM DEED]

The access and utility easement in gross reserved by Declarant pursuant to Article IV above.

Abutters List Orchard Road Subdivision TZ Properties, LLC JN 3236.01

Tax Map R08 Lot 59 / Orchard Road

TZ Properties, LLC 23 Stormy Brook Lane Falmouth, ME 04105

Tax Map R08 Lot 55A / 9 Whitney Road

Carl Terison Jr. / Annette Terison 62 Orchard Road Cumberland, ME 04021

Tax Map R08 Lot 56 / 8 WHitney Road

Carl Terison Jr. / Annette Terison 62 Orchard Road Cumberland, ME 04021

Tax Map R08 Lot 57 / 4 Whitney Road

Jillane M. Bolduc / Christopher J. Bolduc 4 Whitney Road Cumberland, ME 04021

Tax Map R08 Lot 58 / 76 Orchard Road

Christopher S. Neagle 76 Orchard Road Cumberland, ME 04021

Tax Map R08 Lot 59A / 62 Orchard Road

Philip J. Terison 62 Orchard Road Cumberland, ME 04021

Tax Map R08 Lot 59B / 74 Orchard Road

Zachary O. Davis Jenny J. Davis 21 Sawyer Street – Unit 31 Portland, ME 04103

Tax Map R08 Lot 59C / 78 Orchard Road

Tyler Weidner 9 Poswland Street – Unit #2 Portland, ME 04102

Tax Map R08 Lot 60 / 65 Orchard Road Brian S. Stearns / Amanda L. Stearns 65 Orchard Road Cumberland, ME 04021

Tax Map R08 Lot 60A / 79 Orchard Road Evan J. Nicholas 79 Orchard Road Cumberland, ME 04021

Tax Map R08 Lot 61 / 63 Orchard Road

Breanna J. Copp-Petersen / Ryan E. Petersen 63 Orchard Road Cumberland, ME 04021

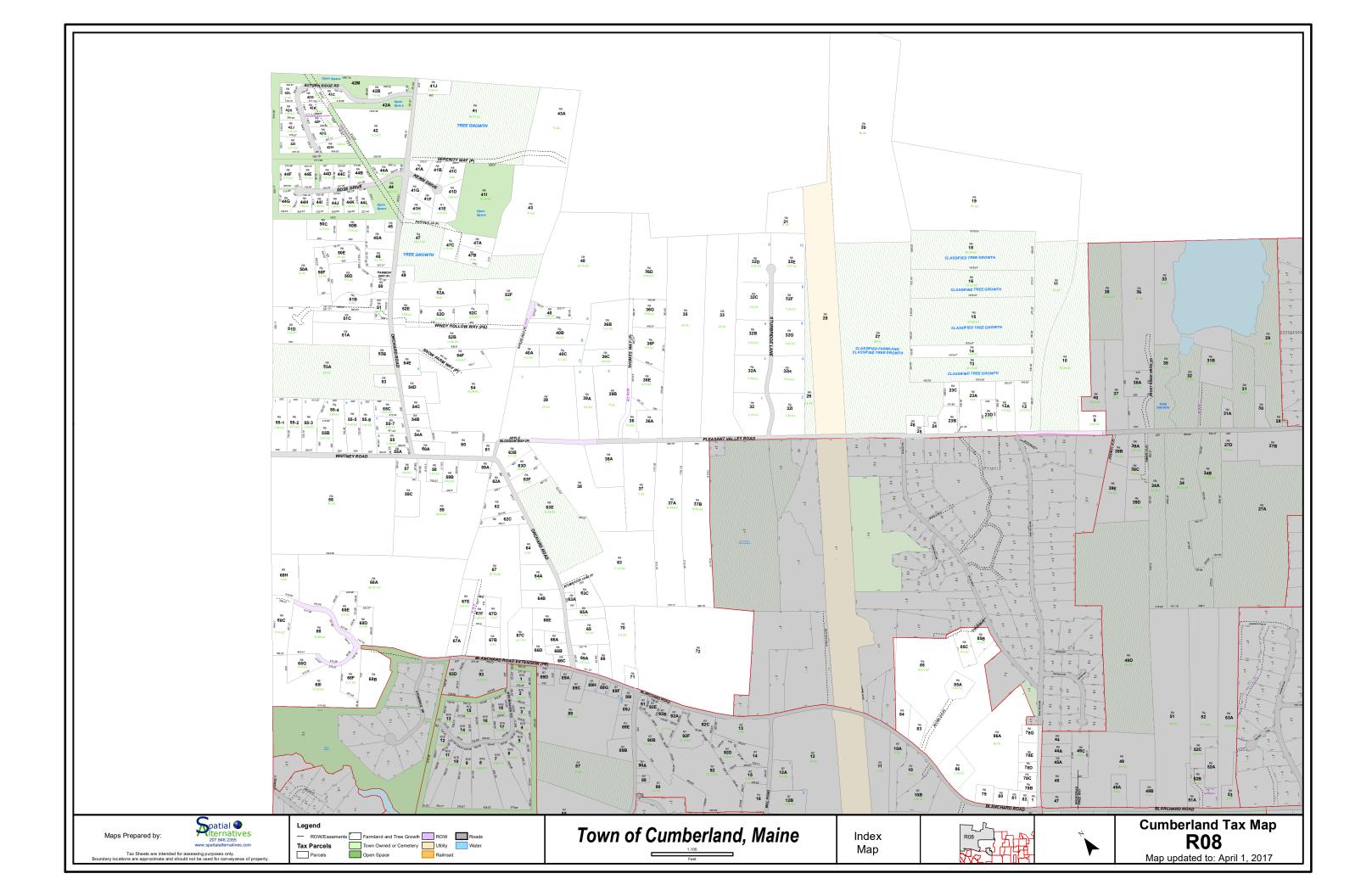
Tax Map R08 Lot 62 / 50 Orchard Road

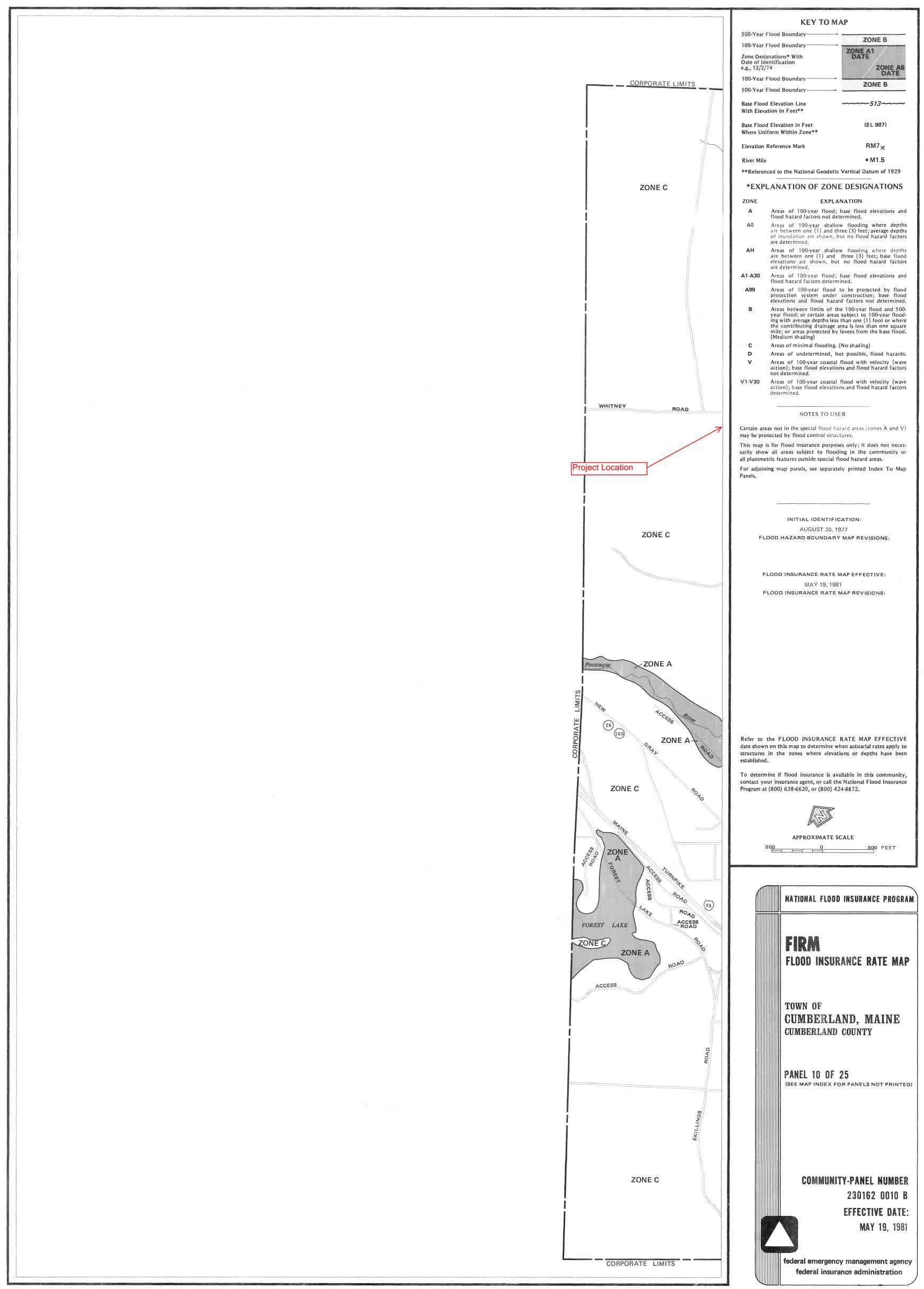
Amy Y. Parker 50 Orchard Road Cumberland, ME 04021

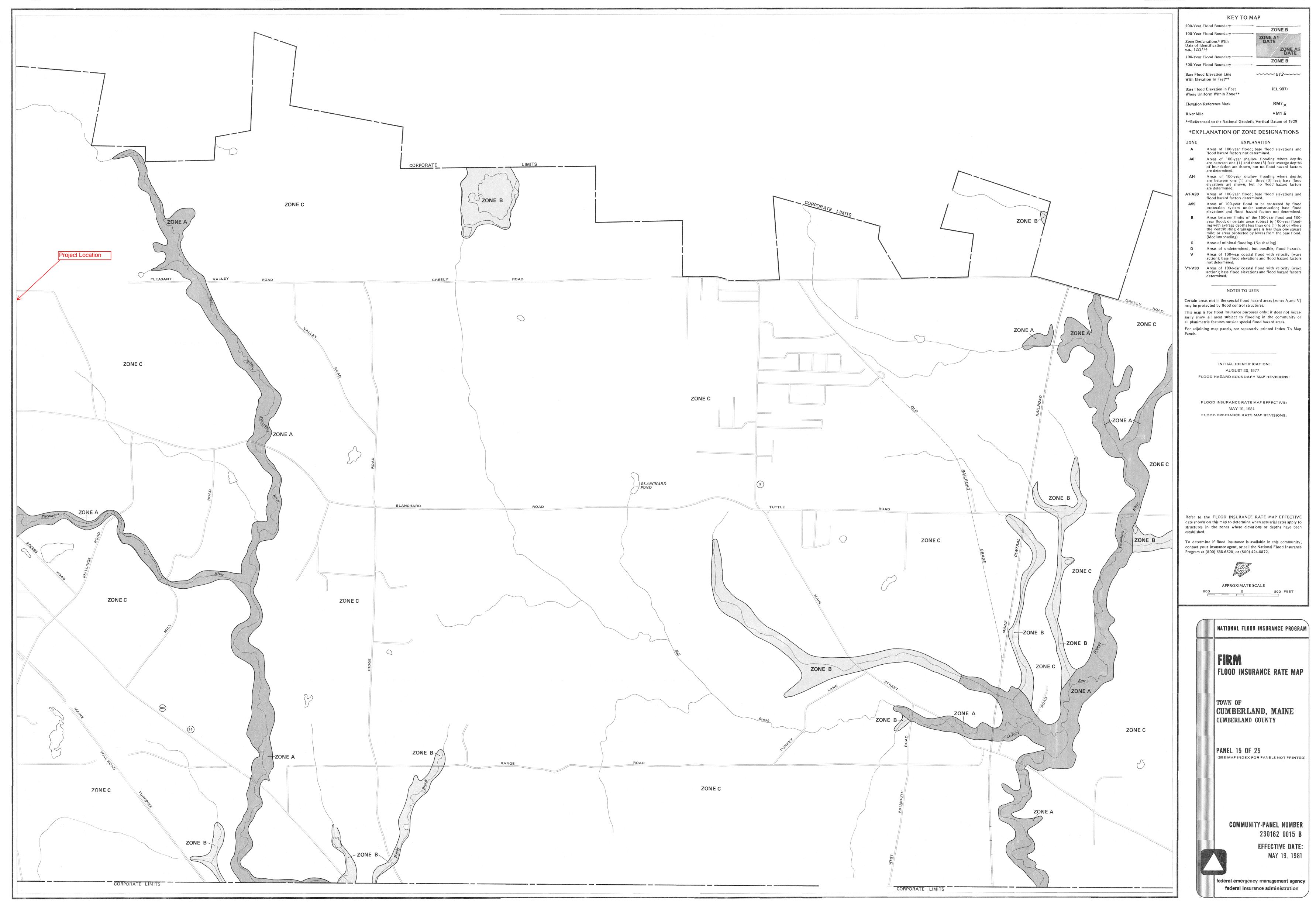
Tax Map R08 Lot 62A / 58 Orchard Road

Thomas U. Gordon / Norma J. Gordon 58 Orchard Road Cumberland, ME 04021

Tax Map R08 Lot 62C / 48 Orchard Road


Margaret E. Stone / Stephen S. Carey 48 Orchard Road Cumberland, ME 04021


Tax Map R08 Lot 67 / Blanchard Road


Peter J. McCabe / Cinderella J. McCabe 345 Blanchard Road PO Box 17 Cumberland Ctr., ME 04021

Tax Map R08 Lot 68A / 365 Blanchard Rd Suzanne L. McCormack – Trustee

365 Blanchard Road Cumberland Ctr., ME 04021

October 25, 2017

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

Central Maine Power 162 Canco Road Portland, ME 04103

Re: Proposed Residential Subdivision Orchard Road, Cumberland Letter of Ability to Serve

To Whom It May Concern:

TZ Properties, LLC has retained Gorrill Palmer to prepare plans and permit applications for a proposed residential subdivision off Orchard Road. The site is shown on Assessor's Map R 08 Lot 59B, is approximately 24.9 acres in size and is located in the Residential Rural District 2 (RR-2). As required by the reviewing authorities, we are writing to request a letter indicating the ability of Central Maine Power to serve this project. A preliminary utility plan is enclosed for your review.

Description of Development Site

The project site is currently undeveloped with slopes of 5% to 17%.

Abutting land uses include:

- > North –Residential
- West –Residential/Orchard
- South Residential
- East Residential

Refer to Figure 1 – Location Map following this page for the project location.

Project Description

The project is a proposed ten lot residential subdivision. Existing electric service is located at Orchard Road across the street from the site. Electric service is proposed overhead from the existing pole to a new pole along the parcel frontage. The service to the lots will be underground from the new pole. Transformers will be placed as needed along the proposed roadway.

At this time, service requirements are not known. It is anticipated that this development would have single phase electric service requirements similar to other residential developments within the Greater Portland area.

October 19, 2016 Page 2

Ability to Serve

In support of the applications to the reviewing authorities, we are writing to request a letter indicating the ability of Central Maine Power Company to serve the project. In addition, we are interested in receiving:

- Indication as to the acceptability of the proposed layout.
- Information as to any easements that you may require on-site.
- Any estimate of connection fees
- Any other information that you believe would be useful as this project proceeds.

Sincerely,

Gorrill Palmer

James attan

James Attianese

JWA/jwa/U:\3236.01 TZ Properties Orchard Rd Cumberland\H Utilities\CMP 10-25-17.doc

GROUNDWATER IMPACT STUDY ORCHARD ROAD SUBDIVISION ORCHARD ROAD, CUMBERLAND

INTRODUCTION:

The purpose of this study is to make an assessment of the hydrogeologic conditions of the abovementioned site and estimate the groundwater quality impact caused by the proposed on-site subsurface wastewater disposal systems for 10 three-bedroom houses.

The proposed development is located along southwest and west sides of Orchard Road opposite the intersection of Orchard Road and Apple Blossom Way at the position indicated on the attached topographic map (Appendix A, Figure 1). Data used for this project includes a site plan titled *Concept Plan – Cluster for TZ Properties* prepared by Gorrill & Palmer and dated June, 2017 along with test pit logs generated by Sebago Technics and published regional maps and literature.

DISPOSAL FIELDS AND WATER SUPPLY:

The proposed disposal fields will be ten individual subsurface wastewater disposal systems (SSWD) each designed to serve a three-bedroom home. Water for this project will be provided by individual on-site wells. The location of test pits, wastewater disposal systems, well exclusion zones and simulated nitrate-nitrogen (NO₃-N) plumes are shown on the Groundwater Impact Study Map (Appendix A, Figure 2).

A potential water supply related concern was raised concerning the potential presence of arsenic in the groundwater under the site. Arsenic is a naturally occurring element in bedrock and was a component of some pesticides used in orchards historically. To evaluate the potential presence of arsenic in the bedrock aquifer under the site, Sebago Technics collected a sample from the water supply at 74 Orchard Road. The water supply consists of a drilled well located near the north wall of the house.

The sample was placed in containers provided by Katahdin Analytical (Katahdin) of Scarborough, Maine. The containers were stored in a cooler, on ice, and delivered to Katahdin the same day. Katahdin analyzed the samples for arsenic and nitrates. Katahdin reported the arsenic level at below the Practical Quantitation Level (PQL) of 0.008 mg/L. The nitrate concentration was reported at 1.1 mg/L. A copy of the Katahdin report is in Appendix B.

SURFICIAL GEOLOGY AND TOPOGRAPHY:

The site is located on the *U.S.G.S. Cumberland Center, Maine 7.5 Minute Series* (Appendix A, Figure 1). Site area topography slopes generally downward from north to south towards Blanchard Road.

The *Significant Sand and Gravel Aquifer Map of the Cumberland Center, Maine Quadrangle* (Appendix A, Figure 3) shows that the site does not fall within a Significant Sand and Gravel Aquifer.

The *Surficial Geology Map of the Cumberland Center, Maine Quadrangle* (Appendix A, Figure 5) shows glacial till underlying the Site.

According to the U.S. Department of Agriculture-National Cooperative Soil Service (USDA-NCSS) soil web, the soil under the site consists of four types of glacial till: Hollis fine sandy loam, Paxton fine sandy loam, Woodbridge fine sandy loam and Ridgebury fine sandy loam. Hollis and Paxton soil forms at the summits and shoulders of hills. Woodbridge soil forms till plains on the shoulders and back slopes of hills. Ridgebury forms till plains in toe slopes environments. Logs for Testpit 101 to 110 are included in Appendix B.

HYDROGEOLOGY:

Precipitation falling on this site enters the open pore spaces on the upper soil horizon, and percolates vertically downward until the water table is encountered. Thereupon, flow is both horizontal and downhill. Two factors of importance in determining the amount of recharge of precipitation into the soil on this site are the groundwater slope or gradient and soil texture. The groundwater seepage velocity is used to calculate the extent of groundwater impact downgradient of the disposal field sites and has been calculated utilizing the following equation:

 $\mathbf{v} = \mathbf{K}\mathbf{i}/\mathbf{n}$

where,

v = groundwater seepage velocity (ft/day)
 K = hydraulic conductivity (ft/day)
 i = hydraulic gradient (ft/ft)
 n = effective porosity (dimensionless)

The hydraulic conductivity of the soil in the disposal area is estimated at 2 feet per day. The average hydraulic gradient under the areas downgradient of the disposal fields varied from 3 to 8%. A groundwater surface gradient of 1.5% was used for the flatter areas and 3% for steeper areas was used as the slope parameter in the model.

CONTAMINATION POTENTIAL:

It is assumed that the worst potential for contamination is the nitrate-nitrogen (NO₃-N) released from wastewater disposal fields. NO₃-N is known to cause methemoglobinemia in infants and is a suspected cause of stomach cancer. The average NO₃-N concentration value of untreated septic tank effluent entering a disposal field is assumed to be 40 milligrams per liter (mg/L). A level of 1.1 mg/L (according to onsite sampling results) was used as a background nitrate concentration in the aquifer. The Federal and State Drinking Water Limit for NO₃-N in public water supplies is 10 mg/L.

The primary mechanism of NO_3 -N concentration reduction is through dilution in groundwater and surface water. Since groundwater is always slowly flowing beneath a disposal field, the NO_3 -N intercepting the water table below a disposal field mixes and dilutes in the groundwater and moves in the direction of groundwater flow in the form of a plume. NO_3 -N is more concentrated in the center than near the edges of a plume. A source that emanates a constant quantity of potential contaminants into groundwater will eventually reach a "steady state." The plume can then be characterized with regard to size, shape, and distribution of concentration.

The method of analysis used to assess the impact of the septic systems on groundwater is an analytical model used to simulate individual plumes. Analysis of the results of this model is instructive in assessing the possible shape and size of wastewater plumes. The model was developed by Baetsle (1969) to depict the migration of radionuclides in porous media, which is adapted here to represent the subsurface

Orchard Road 17440

$$C(x, y, z, t) = \left[\frac{CoVo}{8(\pi t)^{1.5}\sqrt{DxDyDz}}\right] \exp\left[-\frac{(x-vt)^2}{4Dxt} - \frac{y^2}{4Dyt} - \frac{z^2}{4Dzt}\right] ;$$

where,

C(x,y,z,t)	=	NO ₃ -N concentration at specified location and time (mg/L)
Х	=	specified distance from source parallel to the direction of groundwater
		flow (ft)
У	=	specified distance from source perpendicular to the direction of
		groundwater flow (ft)
Z	=	specified vertical distance from source (ft)
Co	=	initial concentration at the source (mg/L)
Vo	=	volume of source (ft ³)
t	=	time elapsed (day)
Dx,Dy,Dz	=	dispersion coefficient along the x,y,z axes (ft ² /day)
v	=	average linear velocity (ft/day).

Assuming that groundwater flow is horizontal, the dispersion coefficient can be calculated as follows:

$$D_{x,y,z} = v_{x,y,z};$$

where x,y,z is dispersivity (ft).

The contaminant velocity of a solute subject to sorption/adsorption is calculated as follows:

$$V_p = v/R_d;$$

where V_p is the contaminant velocity (ft/day) and R_d is the retardation factor (unitless). The retardation factor for NO₃-N is equal to one, however, so the contaminant velocity is equal to the average linear velocity ($V_p = v$). Dispersivity is estimated by an equation based on a weighted least-squares statistical analysis of collected longitudinal dispersivity data versus scale (Xu, Eckstein, 1995). Longitudinal dispersivity can be estimated based on the following calculation:

x =
$$(0.83)[\log_{10}(L_p)]^{2.414};$$

where x is longitudinal dispersivity (ft), and L_p is the plume length (ft). The plume length is a function of the elapsed time and is calculated by the following equation:

$$L_p = V_p t.$$

It has already been established that for NO₃-N, the contaminant velocity (V_p) is equal to the average linear velocity (v). Thus, $L_p = vt$. The transverse and vertical dispersivities are related to the longitudinal dispersivity, as shown below:

$$y = x/3$$

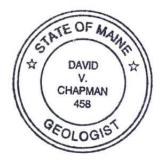
z = x/20.

This method is used to calculate a downgradient NO_3 -N concentration at a specified elapsed time for a single release of NO_3 -N. However, by applying the superposition technique, the estimated concentration of NO_3 -N downgradient at a specified time can be calculated for reoccurring daily NO_3 -N releases to simulate the NO_3 -N plume of a septic system (Chang, *et al.* 1998).

4

In the main equation, CoVo is represented as a daily mass of nitrate-nitrogen loaded into the subsurface wastewater disposal systems. This is estimated by multiplying the design flow volume of effluent by the assumed NO₃-N concentration in the effluent. The simulations were run based on average annual precipitation during drought conditions (60% of average annual precipitation). The NO₃-N concentration of the wastewater is diluted by the rainfall infiltrating the disposal fields during drought conditions. The rainfall is assumed to have a NO₃-N concentration of 0.5 mg/L. The percent of rainfall infiltrating the soils above the disposal fields is estimated based on the soil type and ground surface slope (Maine Department of Environmental Protection, 1991).

Parameters and results for the disposal field are displayed in Appendix D. The resulting $10 \text{ mg/L NO}_3\text{-N}$ concentration plume lengths for the disposal fields are shown on the site plan. The 10 mg/L plumes do not cross the boundaries of the subdivision.


CONCLUSION:

According to the assumptions made for this simulation, the wastewater disposal system will not result in an increase of NO_3 -N concentrations above 10 mg/L in groundwater at the subdivision perimeter property line.

Dad v. Chapman

David Chapman Maine Certified Geologist #458

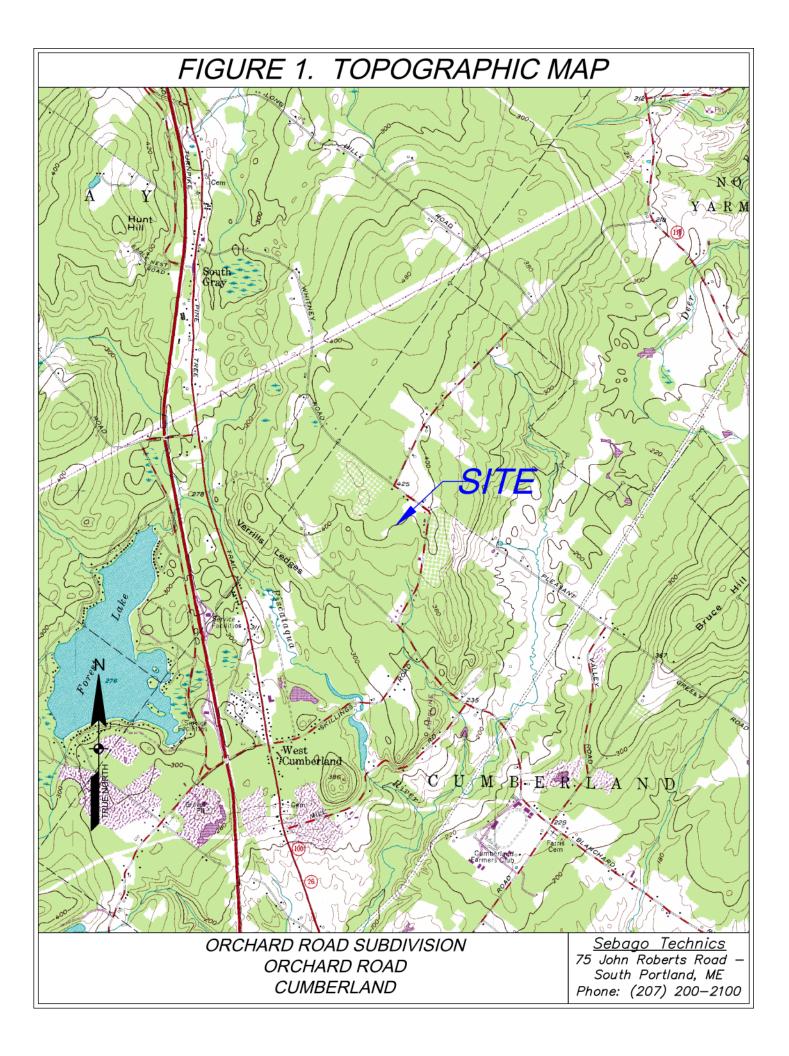
DVC/llg

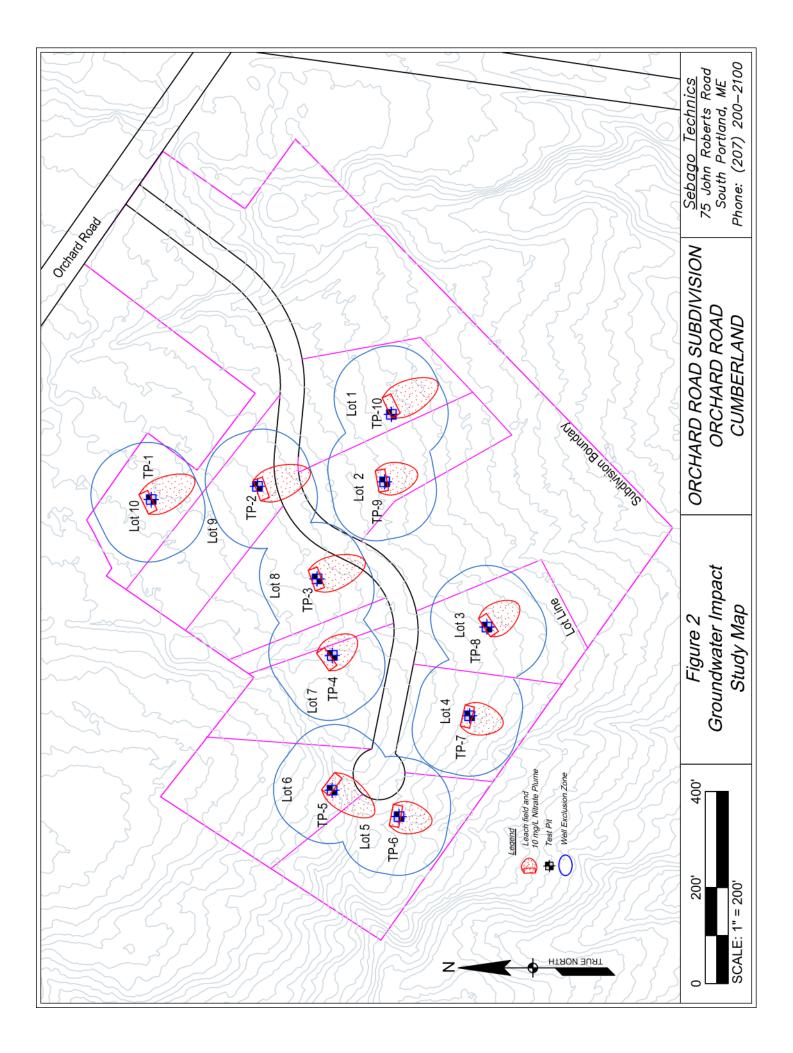
REFERENCES

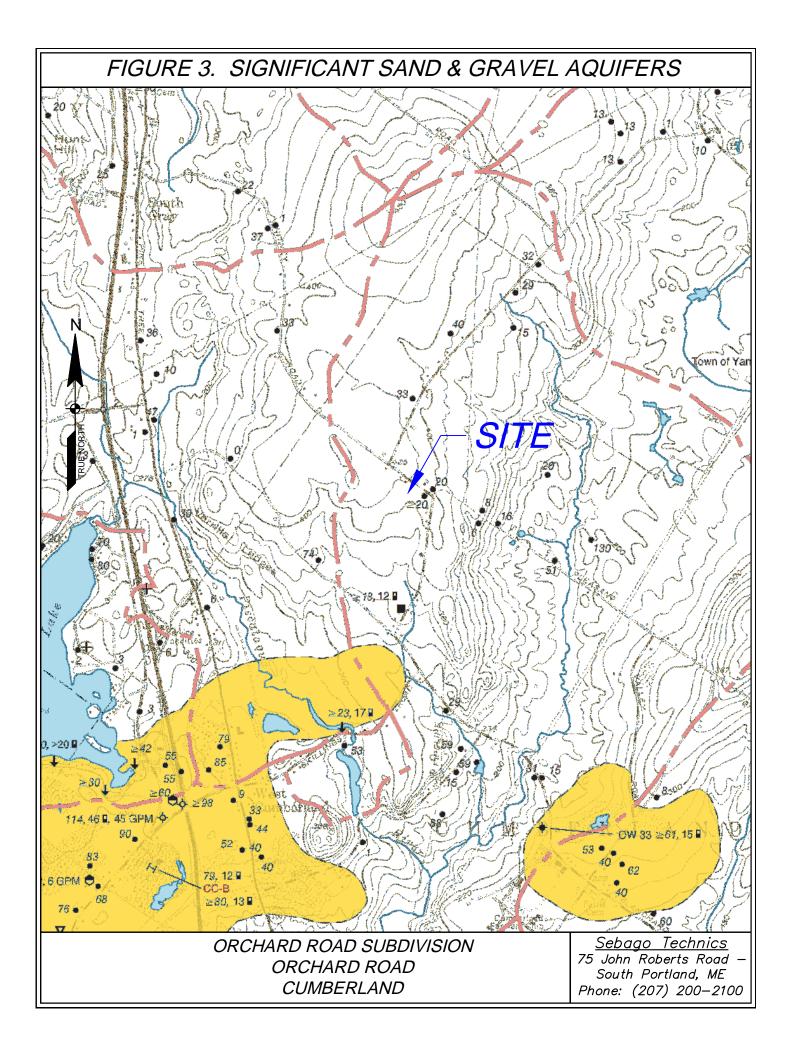
- Baetsle, L. H., 1969, *Migration of Radionuclides in Porous Media*, Progress in Nuclear Energy, Series XII, Health Physics, A.M.F. Duhamel (ed.), Pergamon Press, Elmsford, N.Y. pp.707-730.
- Chang, Tan-yuch, Winkley, W., Montgomery, J., *Utilizing Baetsle's Equation to Model the Fate and Transport of MTBE in Groundwater*, Proceedings of the Petroleum Hydrocarbons and Organic Chemicals in Ground Water Prevention, Detection, and Remediation Conference, 1998, Houston, TX.

Department of Human Services, et al., Maine Subsurface Waste Water Disposal Rules, 144A CMR 241.

Fetter, C.W., 1994, Applied Hydrogeology, 3rd Edition, Prentice Hall.


Maine Association of Professional Soil Scientists and USDA Soil Conservation Service of Maine, *Soil Series of Maine Soil Interpretations*.


Maine Geological Survey, Cumberland Center, Maine, Significant Sand and Gravel Aquifers.


Maine Geological Survey, Cumberland Center Quadrangle (Maine), Surficial Geology.

U.S.G.S., Cumberland Center Quadrangle (Maine) 7.5' Quadrangle 1:24,000, Topographic Map.

Xu, M. and Y. Eckstein, 1995, Use of Weighted Least-Squares Method in Evaluation of the Relationship Between Dispersivity and Field Scale: Ground Water, vol.33, No.6, pp.905-908. APPENDIX A FIGURES

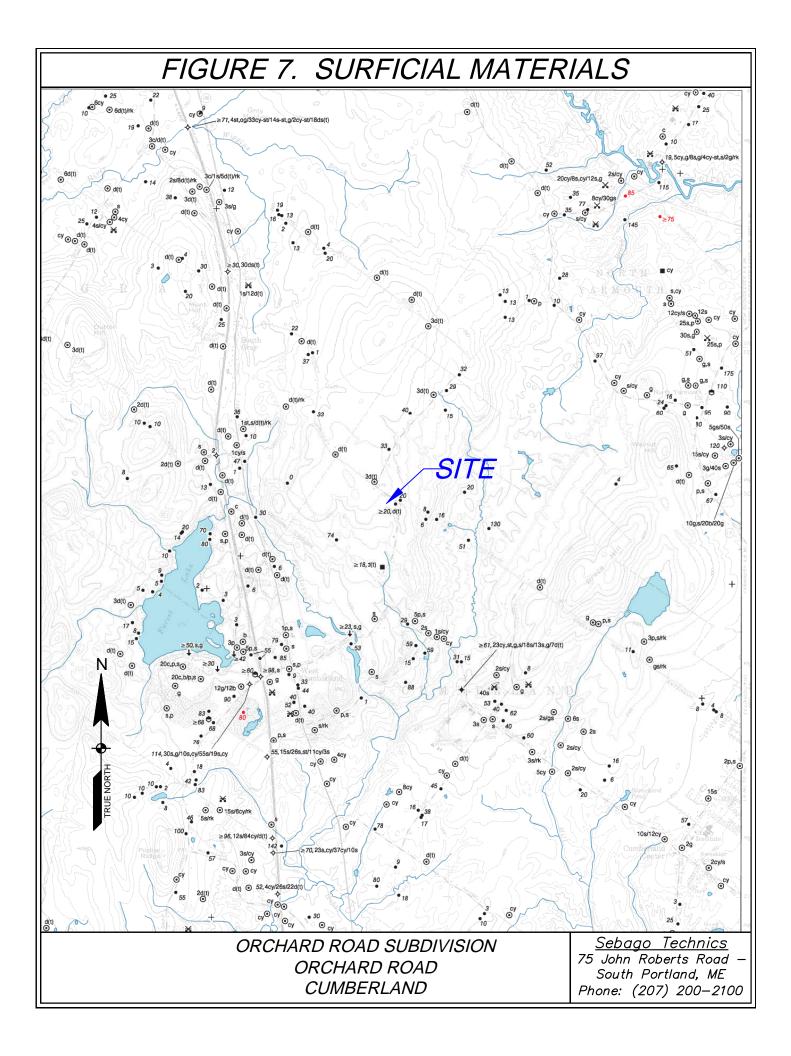


FIGURE 4. AQUIFERS LEGEND Significant Sand & Gravel Aquifer Map Unit and Symbol Descriptions Surficial deposits with good to excellent potential ground-water yield; yields generally greater than 50 gallons per minute to a properly constructed well. Deposits consist primarily of glacial sand and gravel, but can include areas of sandy till and alluvium; yield zones are based on subsurface data where available, and may vary from mapped extent in areas where data are unavailable. Surficial deposits with moderate to good potential ground-water yield; yields generally greater than 10 gallons per minute to a properly constructed well. Deposits consist primarily of glacial sand and gravel, but can include areas of sandy till and alluvium; yields may exceed 50 gallons per minute in deposits hydraulically connected with surface-water bodies, or in extensive deposits where subsurface data are available. Areas with moderate to low or no potential ground-water yield (includes areas underlain by till, marine deposits, eolian deposits, alluvium, swamps, thin glacial sand and gravel deposits, or bedrock); yields in surficial deposits generally less than 10 gallons per minute to a properly constructed well ۲ Drilled overburden well Drilled bedrock well Ouarry t Dug well Driven point Bedrock outcrop \odot Test pit +50 Depth to bedrock, in feet below land surface ≥13 Penetration depth of boring; ≥ symbol refers to minimum depth to bedrock based on boring depth or refusal 6 🖬 Depth to water level in feet below land surface (observed in well, spring, test boring, pit, or seismic line) х Gravel pit (overburden thickness noted in feet, e.g. 5-12') 4 GPM Yield (flow) of well or spring in gallons per minute (GPM) ٤ Spring, with general direction of flow Observation well (project well if labeled; nonproject well if unlabeled) Test boring (project boring if labeled; nonproject boring if unlabeled) Δ Potential point source of ground-water contamination Surface-water drainage-basin boundary; surface-water divides generally correspond to ground-water divides. Horizontal direction of ground-water flow generally is away from divides and toward surface-water bodies. -MAP-7 131, 23 🖬 Twelve-channel seismic line, with depth to bedrock and depth to water shown at the midpoint of the line, in feet below land surface. Single-channel seismic line, with depth to bedrock and depth to 69, 12 🖬 MAP-E water shown at each end of the line, in feet below land surface. 72. 12 🖬 Unless otherwise indicated, data shown above the line-identifier box refers to the northern end of the seismic line. <u>Sebago Te</u>chnics ORCHARD ROAD SUBDIVISION 75 John Roberts Road ORCHARD ROAD South Portland, ME CUMBERLAND Phone: (207) 200-2100

FIGURE 6. SURFICIAL GEOLOGY LEGEND

	HOLOCENE DEPOSITS Stream alluvium - Sand, silt, and minor amounts of gravel deposited on floed	P1	Till - Poorly sorted mixture of g action of glacier ice.	ravel, sand, silt, and clay deposited directly by the
На	Stream alluvium - Sand, siit, and minor amounts of graver deposited on flocd plains of modern streams.	Pu	Undifferentiated sediments - P	leistocene surficial sediments of uncertain origin.
Høt	Stream terraces - Flat alluvial benches situated above modern flood plains of streams. Materials forming the depositional terrace include gravel, sand, silt, and clay. Step-like morphology is created by downcutting of the stream through previously deposited material, of glacial or postglacial origin and age.	* j4		dividual outcrops of ledge exposed at the surface. s areas where bedrock is covered by a thin vencer
Hisss	Wetland, swamp - Peat and fine-grained inorganic sediment. Poorly drained area with standing water common. Hwsp indicates swamps which are likely to include peat deposits that equal or exceed 1.5 meters in thickness.	21 [°]	Artificial fill - Mixture of till, gr and dumped to form elevated sec	avel, sand, clay, and artificial materials transported tions of roadways, etc.
Hwfm	Wetland, freshwater marsh - Peat and fine-grained inorganic sediment. Poorly drained grassland with standing water common. Hw fing indicates marshes that are likely to include peat deposits that equal or exceed 1.5 meters in thickness.		Contact - Indicates boundary approximate.	between adjacent map units, dashed where
	PLEISTOCENE DEPOSITS	Zas	Glacial striation or groove - Ar marks point of observation.	row shows direction of former ice movement. Dot
Fimn	Marine nearshore deposits - Sand and gravel deposits formed as beaches, and shallow marine sand bodies formed during marine submergence and regression.		End moraine - Ridge of till, san	d, and gravel deposited and/or deformed by glacier
Pp	Presumpscot Formation - Fine-grained marine mud (silt and clay with local sandy beds and lenses) locally with marine fossils and dropstones deposited in deeper quieter water during the marine submergence of the coastal lowland.		Ice margin position - Line sl	iows approximate position of ice margin during in positions. Dashed where approximate.
Pmf	Marine fan - Layered gravel and sand deposited on the scafloor in a wedge or mound form at the glacter margin during marine submergence.	Ø	Glacially streamlined hill - Sy former ice-flow direction.	nibol shows trend of long axis, which is parallel to
Pmd	Marine delta - Sorted and stratified sand and gravel deposited in the late-glacial sea, with flat top graded to ocean surface.	10,150±453 ©		es site where marine fossils were located. Sites ites were obtained also show radiocarbon age
Prid)	Marine ice-contact delta - Ice-contact delta composed primarily of sorted and stratified sand and gravel. Deposit was graded to surface of late-glacial sea and is distinguished by flat top and foreset and topset beds.	▲350	Glaciomarine delta - Elevatio	n of contact between topset and foreset beds in ates former position of sea level (from Thompson
Pge	Esker - Gravel and sand deposited in an ice tunnel by subglacial meltwater stream.		una vallata, 1707).	
Pame	End moraine complex - Area of end moraines and associated glaciomarine sediments (submarine fan and sea-floor deposits). Composed of till, sand, and gravel deposited at the margin of the late Wisconsinan ice sheet.			
	ORCHARD ROAD SU	BDIVIS	SION	<u>Sebago Technics</u>
	ORCHARD RC	DAD		75 John Roberts Road – South Portland MF
	CUMBERLAN	ID		<u>Sebago Technics</u> 75 John Roberts Road – South Portland, ME Phone: (207) 200–2100

FIGURE 8. SURFICIAL MATERIALS LEGEND

For example, poorly sorted sediments deposited directly may be genetically classified as "till". The symbols listed below indicate materials observed in data from varius sources. Where more than one textural of decreasing order of abundance (e.g. s, st, cy). Individual Hyphens show the ranges of particle sizes present where indicate superposition of materials; thicknesses are in fee	quadrangle, independent of interpretations regarding their origin. from glacial ice are shown here as "diamicton", although they borrow pits and other surface exposures, as well as subsurface class is present, materials are separated by commas and listed in materials may occur in distinct layers, or they may be mixed. their relative abundances are uncertain (e.g. st-c). Slash marks et (e.g. 10s/3cy). "E" indicates a significant stratigraphic sequence alities may be designated by numbers that refer to descriptions in found on the map.
 g Undifferentiated gravel, used as a general term. Can be subdivided by size as follows: b Boulder gravel >256 mm (10") c Cobble gravel 64-256 mm (2.5-10") p Pebble gravel 2-64 mm (0.1-2.5") gs Gravelly sand (this is a special case for sand with lesser amounts of intermixed gravel, i.e. pebbly sand, cobbly sand, or bouldery sand) sg Sand and gravel (used only to describe slumped face or other site where relative abundances of sand vs. gravel are unknown). s Undifferentiated sand, used as a general term. Can be subdivided by size as follows: vCs Very coarse sand (1-2 mm) cs Coarse sand (0.5-1 mm) ms Medium sand (0.25-0.5 mm) fs Fine sand (0.125-0.25 mm) vfs Very fine sand (0.0625-0.125 mm) st Silt (0.002-0.0625 mm) cy Clay (<0.002 mm) og Organic-rich sediment (can be any organic material, including forest litter, wood, shells, etc.) pt Peat (reserved for actual fibrous peat) 	 d Undifferentiated diamicton (poorly-sorted sediment in which particle sizes may range from clay to boulders). Used as a general term or subdivided as follows: dg Gravelly-matrix diamicton df Silty-matrix diamicton df Clayey-matrix diamicton df Clayey-matrix diamicton df Holdion till. Deposited during retreat of the late Wisconsinan ice sheet. Typically sandy, stony, and not very compact. df Lodgement till. Inferred to have been deposited at the base of the late Wisconsinan ice sheet. Usually very compact. df Flowtill. Deposited by slumping adjacent to glacial ice. df Variably weathered till (usually a lodgment facies) of inferred pre-late Wisconsinanage. af Artificial fill (e.g. road fills, building sites, dumps) bd Scattered boulders; interpreted as till where followed by (t) nk Bedrock (observed in pit floor, boring, or natural exposure) ns Rottenstone, disintegrated or weathered bedrock, saprolite, u Unknown (material unidentified) R Refusal (in test boring or well) (f) Fossiliferous (used to indicate fossiliferous units within a sequence).
 Bedrock well Bedrock well Drilled overburden well Dug well Driven point Bedrock outcrop Quarry 20fs.st Observation well with materials data \$6 Set Set	Materials data from shovel hole, hand-auger hole, natural exposure, or excavation (other than borrow pit). Depth to bedrock from well (≥ is used to indicate minimum depth to bedrock), in feet below land surface Borrow pit, recently active at time of mapping, with materials data. Borrow pit, evidently abandoned or in long disuse at time of mapping, with materials data. Location of site for which a data sheet is on file at the Maine Geological Survey. Depth to bedrock from seismic line, in feet below land surface Descubation Substitution Substitution Descubation Descubation Descubation Descubation

APPENDIX B

KATAHDIN ANALYTICAL REPORT

October 27, 2017

Mr. Dave Chapman Sebago Technics 75 John Roberts Rd Suite 1A South Portland,ME 04106

RE:	Katahdin Lab Number:	SK9925
	Project ID:	Orchard Road IVIT
	Project Manager:	Mr. Galen Nickerson
	Sample Receipt Date(s):	October 25, 2017

Dear Mr. Chapman:

Please find enclosed the following information:

- * Report of Analysis (Analytical and/or Field)
- * Chain of Custody (COC)
- * Login Report

A copy of the Chain of Custody is included in the paginated report. The original COC is attached as an addendum to this report.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. The results contained in this report relate only to the submitted samples. This cover letter is an integral part of the ROA.

We certify that the test results provided in this report meet all the requirements of the NELAC standards unless otherwise noted in an attached technical narrative or in the Report of Analysis.

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Please go to http://www.katahdinlab.com/cert.html for copies of Katahdin Analytical Services Inc. current certificates and analyte lists.

Sincerely, KATAHDIN ANALYTICAL SERVICES

10/27/2017

Authorized Signature - Quality Assurance Officer

Date

KATAHDIN ANALYTICAL SERVICES – INORGANIC DATA QUALIFIERS

The sampled date indicated on the attached Report(s) of Analysis (ROA) is the date for which a grab sample was collected or the date for which a composite sample was completed. Beginning and start times for composite samples can be found on the Chain-of-Custody.

U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Practical Quantitation Level (PQL) (also called Limit of Quantitation (LOQ)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.

Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL "U" LOQ or "U" LOD, where the rate of false negatives is <1%.

- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Practical Quantitation Level (PQL) (also called Limit of Quantitation (LOQ)), but above the Method Detection Limit (MDL).
- I-7 The laboratory's Practical Quantitation Level (PQL) or LOQ could not be achieved for this parameter due to sample composition, matrix effects, sample volume, or quantity used for analysis.
- A-4 Please refer to cover letter or narrative for further information.
- H_ Please note that the regulatory holding time for ______ is "analyze immediately". Ideally, this analysis must be performed in the field at the time of sample collection. ______ for this sample was not performed at the time of sample collection. The analysis was performed as soon as possible after receipt by the laboratory.

H1 - pH H2 - DO H3 - sulfite H4 - residual chlorine

- T1 The client did not provide the full volume of at least one liter for analysis of TSS. Therefore, the PQL of 2.5 mg/L could not be achieved.
- T2 The client provided the required volume of at least one liter for analysis of TSS, but the laboratory could not filter the full one liter volume due to the sample matrix. Therefore, the PQL of 2.5 mg/L could not be achieved.
- M1 The matrix spike and/or matrix spike duplicate recovery performed on this sample was outside of the laboratory acceptance criteria. Sample matrix is suspected. The laboratory criteria was met for the Laboratory Control Sample (LCS) analyzed concurrently with this sample.
- M2 The matrix spike and/or matrix spike duplicate recovery was outside of the laboratory acceptance criteria. The native sample concentration is greater than four times the spike added concentration so the spike added could not be distinguished from the native sample concentration.
- R1 The relative percent difference (RPD) between the duplicate analyses performed on this sample was outside of the laboratory acceptance criteria (when both values are greater than ten times the PQL).

MCL	Maximum Contaminant Level	NL	No limit
NFL	No Free Liquid Present	FLP	Free Liquid Present
NOD	No Odor Detected	TON	Threshold Odor Number

- D-1 As required by Method 5210B, APHA Standard Methods for the Examination of Water and Wastewater (21st edition), the BOD value reported for this sample is 'qualified' because the check standard run concurrently with the sample analysis did not meet the criteria specified in the method (198 +/- 30.5 mg/L). These results <u>may</u> not be reportable for compliance purposes.
- D-2 The measured final dissolved oxygen concentrations of all dilutions were less than the method-specified limit of 1 mg/L. The reported BOD result was calculated assuming a final oxygen concentration equal to 1 mg/L. The reported value should be considered a minimum value.
- D-3 The dilution water used to prepare this sample did not meet the method and/or regulatory criteria of less than 0.2 or 0.4 mg/L dissolved oxygen (DO) uptake over the five day period of incubation. These results <u>may</u> not be reportable for compliance purposes.

REPORT OF ANALYTICAL RESULTS

Dave Chapman Client: Lab Sample ID: SK9925-001 Sebago Technics Report Date: 10/27/2017 75 John Roberts Rd PO No.: Suite 1A Project: Orchard Road IVIT South Portland, ME 04106 Date Date **Sample Description** Matrix Filtered Sampled Received 74 ORCHARD ROAD AQ 10/25/2017 No(Total) 10/25/2017 Parameter **Result Units** Adjusted Dilution PQL AnalyticalM Analysis By Prep Prepped By QC Notes

		PQL	Factor	ethod	Date	Method	Date	_,	
ARSENIC	U 0.008 mg/L	0.008	1	0.008 SW846 6010	10/26/17	MD SW846 307	10 10/26/17	AMJ KJ26ICW2	

Report of Analytical Results

Report Date: 26-OCT-17	l IVIT mpled Date Received 7 09:20:00 25-OCT-17 Preo. Method Preo. Date Analy:	Drchard Road IVIT K9925 <u>Date Sampled</u> <u>Date Recei</u> 25-OCT-17 09:20:00 25-OCT-17 is Date Pren. Method Pren. Date	Client P.O: Project: Orchart SDG: SK992: SDG: SK992: Add: Analysis Date CBatch Analysis Date	106 Adi POL Anal. Method OC Batch	Adi MDL Ar
Report Date: 26-OCT-17 Client PO: Project: Orchard Road IVIT SDG: SK9925	Date Receive	Date Sampled Dial 25-OCT-17 09:20:00 25	<u>Matrix</u> AQ		
Report Date: 26-OCT-17)rchard Road IVIT 589925	Client PO: Project: (SDG: S		
		:6-OCT-17	Report Date: 2 Client PO:		

,

Parameter	Result	Result Adj PQL Adj MDL	Adj MDL	Anal. Method	QC Batch Analy	Analysis Date	Prep. Method Prep. Date Analyst Footnotes	thod Prep. Date Analyst	Analyst	Footnotes	RPD/RSD
Nitrate As N	1.1 mg/L	0.050	.0152	EPA 353.2	WG216349	WG216349 25-OCT-17 16:56:23	N/A	N/A	AP		

Katahdin Analytical Services, Client: Sebago Tech	L.V.		17.84	KAS PM: (N Sampled By: Clock						
	-									
Project:		·	+	S Entry						
KAS Work Order#: SK9925			Кім	S Revie	w By:	GN Received By: CB				
SDG #: Co	oler:		_ of	<u> </u>		Date/Time Rec.: 10.25.17 1000				
Receipt Criteria			N	EX*	NA	Comments and/or Resolution				
1. Custody seals present / intact?		~								
2. Chain of Custody present in cooler?										
3. Chain of Custody signed by client?		\geq	<u> </u>							
4. Chain of Custody matches samples?										
5. Temperature Blanks present? If not, tak temperature of any sample w/ IR gun.	(e	-				Temp (°C):				
Samples received at <6 °C w/o freezing	? /	-				Note: Not required for metals (except Hg soil) analysis.				
Ice packs or ice present?		~				The lack of ice or ice packs (i.e. no attempt to				
If yes, was there sufficient ice to meet temperature requirements?	~				······	begin cooling process) or insufficient ice may not meet certain regulatory requirements and may invalidate certain data.				
If temp. out, has the cooling process be (i.e. ice or packs present) and sample collection times <6hrs., but samples are yet cool?					~	Note: No cooling process required for metals (except Hg soil) analysis.				
6. Volatiles:		\uparrow		· · · · ·		· · · · · · · · · · · · · · · · · · ·				
Aqueous: No bubble larger than a pea?										
Soil/Sediment:										
Received in airtight container? Received in methanol?										
Methanol covering soil?		+			\leq					
D.I. Water - Received within 48 hour HT?		+				· · ·				
Air: Refer to KAS COC for canister/flow controller requirements.	√ if	air	inclue	ded						
7. Trip Blank present in cooler?		Τ			~					
8. Proper sample containers and volume?										
9. Samples within hold time upon receipt?		-								
 Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9 Cyanide – pH >12 	· · · ·									
					$ \leq $					
* Log-In Notes to Exceptions: document	any proble	əm	s with	n samp	oles o	r discrepancies or pH adjustments.				
аланда <u>улака тардык баларды</u> баларды баланда орууну жаларды жайына тарда баларды. Кайлан түрк жай бала тарды б			-							

	MALVICAL SERVICES) Technology Way uborough, ME 04074 : (207) 874-2400 &: (207) 775-4029				С	PLEA	N OF	r dow	/N AND	۱Y	Page	_/_ 0	of <u>1</u>
Cli	ent Sebago Technic	5		Conta Dciv		2.PMa)	Phone # (207)	577	- 6 19	F va (
Ad	dress 75 John Robe		City S	boutt	Pori	tland	<u> </u>	State A	<u>ete</u>			de 🔿	06	
Pu	rchase Order # 17440	Pro	j. Name / N					······		Katahdir				
	(if different than above)				Idress									
Sa	mpler (Print / Sign) Dave Cha	pman/Dad	Chapm	~		**			Сор	es To:				
	AB USE ONLY WORK ORD		25		Trib.	- CEA		ANALYSIS H	RDSDR	VAUUVES				
RE	MARKS:												Filt. <u> 0Y0N</u>	
SL														
				····	<u>,</u>	te								
TE	MP°C TEMP BLAN	Т		NTACT	121	Nitrate								
*	Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	Å	Z								
	74 Orchard Road	10/25/17/ 0920	DRINKWE WATER	2	×	×				·				
		/												
	· · · · · · · · · · · · · · · · · · ·	/												
		/					L							
		/												
		/												
	······································	/												
	· · · · · · · · · · · · · · · · · · ·	/												
		/				ļ								
		<u> </u>						:					ļ	
		/												
		/				ļ	 							
		/		*********										
		/		····										
									·*					
COM	MENTS A. L. TAT	/ /	6.1								···			
	Land Chipmen 10.	te / Time Receiv $25-17 \log 5$	ved By: (Sig	inature) 10-5	רו א רו	elinquish	ed By: (\$	Signature)	Dat	e / Tim	e R	eceived f	3y: (Signa	ature)
Re		te / Time Peceiv	ved By: (Sig					Signature) EOF SHAL		e / Tim 	e R	eceived f	Jy: (Signa	ature)

SERVICES, EXCEPT WHEN A SIGNED CONTRACTUAL AGREEMENT EXISTS Katahdin Analytical Services SK9925 page 0000006 of 0000007

	Katahdin Analytical Services	
ANALYTICAL SERVICES	Login Chain of Custody Report (Ino1) Oct. 25, 2017 11:05 AM	Page: 1 of 1
Login Number: SK9925	Quote/Incoming:	
Account:SEBAGOTECH001 Sebago Technics	NoWeb Login Information:	
Project:	ANALYSIS INSTRUCTIONS CHECK NO. CLIENT PO#	: FIRM-HARD COPY BY END OF DAY : :
<i>Primary Report Address:</i> Dave Chapman Sebago Technics	CLIENT PROJECT MANAGE CONTRACT COOLER TEMPERATURE	: : : 4.6
75 John Roberts Rd Suite 1A	DELIVERY SERVICES EDD FORMAT LOGIN INITIALS	Client
South Portland,ME 04106 Primary Invoice Address:	PM PROJECT NAME	: SO : GN : Orchard Road IVIT
Accounts Payable Sebago Technics 75 John Roberts Rd Suite 1A South Portland,ME 04106	QC LEVEL REPORT INSTRUCTIONS SDG ID SDG STATUS VERBAL TAT	 I email pdf, EDD and Invoice to Dave, no HC ; ;

Report CC Addresses: Invoice CC Addresses:

Laborator Sample ID	-	Client Sample Number		lect e/Time	Receive Date	PR	Verbal Date	Due Date	Mailed
SK9925-1	7	4 ORCHARD ROAD	25-0	OCT-17 09:20	25-OCT-17		27-OCT-17	27-OCT-17	
Matrix		Product	Hold Date (shortest) Bottle Type		Bottle C	ount	Comments	
Aqueous	s	E353.2-NITRATE	27-OCT-17	125mL Plastic	0				
Aqueous	s	SW3010-PREP	23-APR-18	250mL Plastic	c+HNO3				
Aqueous	S	SW6010-ARSENIC	23-APR-18	250mL Plastic	C+HNO3				

Total Samples: 1

Total Analyses: 3

APPENDIX C TESTPIT LOGS

ebago Technics 75 John Roberts Road, South Portland, ME - ph: 207-200-2100

SOIL PROFILE / CLASSIFICATION INFORMATION

Applicant Name:

DETAILED DESCRIPTION OF SUBSURFACE CONDITIONS AT PROJECT SITES Project Location (municipality):

Cumberland

Project Name: Orchard Road Subdivision

Gorrill & Palmer

Observation Hole # TP-1 Test Pit □ Boring 1-2 " Depth of organic horizon above mineral soil Color Mottling Texture Consistency 0 Dark Fine Sandy 6 Friable Depth below mineral soil surface (inches) Brown Loam 12 18 24 Light Olive Many/ Sandy Loam Firm Brown Prominant 30 36 42 Limit of Excavation at 20" 48 Slope Limiting Factor Soil Classification Groundwater Restrictive Layer 0-3 12" D 3 Bedrock Profile Condition Percent Depth

0	bserv	vation Hole #	TP-2		Test Pit	□ Boring
_		eral soil				
	0	Texture	Consistency		Color	Mottling
Depth below mineral soil surface (inches)	6 12	Fine Sandy Loam	Friable		Dark Brown	
surfa	18					
eral soil	24	Sandy Loam			Light Olive Brown	Common/
v mir	30		Firm			Distinct
h belov	36		Fil	m		
Dept	42					
	10		Lim	it of Exca	vation at 30"	
	48	Soil Classi	fication	Slope	Limiting Factor	Groundwater
			С	0-3	12"	Restrictive Layer
		Profile Con	dition	Percent	Depth	Bedrock

0	Observation Hole #				Test Pit	Boring
_	eral soil					
	0	Texture	Consis	stency	Color	Mottling
	6	Fine Sandy Loam	Fria	blo	Dark	
ches	Ŭ		FIId	Die	Yellowish	
e (in	12	Sandy Loam			Brown	
il surfac	18					
al so	24					
Depth below mineral soil surface (inches)	30		Fir	m	Light Olive Brown	Common/ Distinct
h belo	36					
Depti	42					
	40		Lim	it of Exca		
	48	Soil Classif	ication	Slope	Limiting Factor	Groundwater
		3	с	3-8	24"	Restrictive Layer
		Profile Con	dition	Percent	Depth	Bedrock

0	bserv	vation Hole #	TP-4	. <u> </u>	Test Pit	□ Boring			
_		1-2 "	Depth of	organic ho	horizon above mineral soil				
	0	Texture	Consis	stency	Color	Mottling			
ches)	6	Condy			Dark Yellowish Brown				
e (inc	12	Sandy Loam	Fria	DIE		None Observed			
Depth below mineral soil surface (inches)	18				Yellowish Brown	Observed			
eral soi	24								
w min	30								
oth belc	36								
Dep	42								
	48				ation at 24"				
		Soil Classi	fication	Slope	Limiting Factor	Groundwater			
		3	<u>C</u>	3-8	>24"	Restrictive Layer Bedrock			
		Profile Con	dition	Percent	Depth	L Dealork			

INVESTIGATOR INFORMATION AND SIGNATURE						
Signature: Dand v. Chapman	Date: 9-27-17					
Name Printed/typed: David V. Chapman	Cert/Lic/Reg.# 293					
Title: Licensed Site Evaluator Certified Geologist 	Certified Soil ScientistOther:					

ebago Technics 75 John Roberts Road, South Portland, ME - ph: 207-200-2100

□ Boring

Mottling

SOIL PROFILE / CLASSIFICATION INFORMATION

DETAILED DESCRIPTION OF SUBSURFACE CONDITIONS AT PROJECT SITES

Depth of organic horizon above mineral soil

Test Pit

Color

Dark Brown

Project Name: Orchard Road Subdivision

Observation Hole #

1-2

0

6

12

18

24

30

36

42

48

Soil

3

Profile

Depth below mineral soil surface (inches)

"

Texture

Sandy

Loam

Applicant Name: Gorrill & Palmer

Project Location (municipality): Cumberland

TP-6

Consistency

Friable

Observation Hole #

1-2

0

6

"

Texture

Sandy

0	bserv	vation Hole #	TP-5		Test Pit	Boring		
_		1-2 "	orizon above min	eral soil				
	0	Texture	Consi	stency	Color	Mottling		
(S)	6	Sandy	Friable		Dark Brown			
Depth below mineral soil surface (inches)	12	Loam			Light Olive Brown	None Observed		
l surf	18							
ieral soi	24		Firm					
v mir	30							
oth belov	36							
Dep	42							
	10		Lim	it of Exca	cavation at 24"			
	48	Soil Classi	fication	Slope	Limiting Factor	Groundwater		
	_3C		<u>C</u>	3-8	21	Restrictive Layer		
		Profile Con	dition	Percent	Depth	Bedrock		

TP-7

Consistency

Friable

Firm

Classification

С

Condition

Limit of Excavation at 25"

Slope

3-8

Percent

Test Pit

Color

Dark Yellowish

Brown

Light Olive Brown

Limiting Factor

20"

Depth

Depth of organic horizon above mineral soil

Boring

Mottling

None

Observed

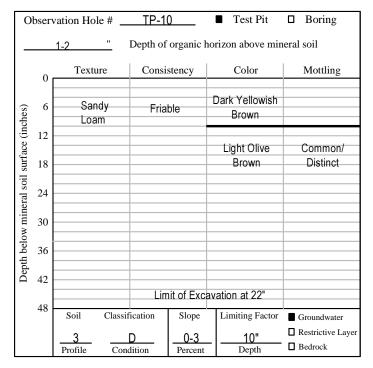
Groundwater Restrictive Layer

Bedrock

es)	6	Sandy	Fria	DIOWII		
nch		Loam				None
ce (i	12				Light Olive	Observed
ırfa	18				Brown	
il sı	10					
al sc	24					
ner			Fi	rm		
v m	30					
elov	36					
Depth below mineral soil surface (inches)	30					
Dep	42					
			Lin	nit of Exca	vation at 24"	
	48	Soil Classif	ication	Slope	Limiting Factor	Groundwater
			_	-		Restrictive Lay
		<u> </u>	D dition	<u>3-8</u> Percent	<u>21"</u> Depth	Bedrock
O	bserv	vation Hole #	TP-8 Depth of		Test Pit orizon above min	Boring eral soil
0	bserv	1-2 "	Depth of	organic h	orizon above min	eral soil
0	bserv		Depth of			_
	0	1-2 " Texture	Depth of Consi	organic h	orizon above min Color	eral soil
		1-2 " Texture Sandy	Depth of	organic h	orizon above min	eral soil
	0 6	1-2 " Texture	Depth of Consi	organic h	orizon above min Color Dark Yellowish	eral soil Mottling None
	0	1-2 " Texture Sandy	Depth of Consi	organic h	orizon above min Color Dark Yellowish	eral soil Mottling
	0 6	1-2 " Texture Sandy	Depth of Consi	organic h	orizon above min Color Dark Yellowish Brown	eral soil Mottling None
	0 6 12 18	1-2 " Texture Sandy	Depth of Consi	organic h	orizon above min Color Dark Yellowish Brown Light Yellowish	eral soil Mottling None
	0 6 12	1-2 " Texture Sandy	Depth of Consi	organic h stency ble	orizon above min Color Dark Yellowish Brown Light Yellowish	eral soil Mottling None
	0 6 12 18 24	1-2 " Texture Sandy	Depth of Consi	organic h	orizon above min Color Dark Yellowish Brown Light Yellowish	eral soil Mottling None
	0 6 12 18	1-2 " Texture Sandy	Depth of Consi	organic h stency ble	orizon above min Color Dark Yellowish Brown Light Yellowish	eral soil Mottling None
	0 6 12 18 24	1-2 " Texture Sandy	Depth of Consi	organic h stency ble	orizon above min Color Dark Yellowish Brown Light Yellowish	eral soil Mottling None
	0 6 12 18 24 30 36	1-2 " Texture Sandy	Depth of Consi	organic h stency ble	orizon above min Color Dark Yellowish Brown Light Yellowish	eral soil Mottling None
Depth below mineral soil surface (inches)	0 6 12 18 24 30	1-2 " Texture Sandy	Depth of Consi Fria	rm	orizon above min Color Dark Yellowish Brown Light Yellowish Brown	eral soil Mottling None
	0 6 12 18 24 30 36 42	1-2 " Texture Sandy	Depth of Consi Fria	rm	orizon above min Color Dark Yellowish Brown Light Yellowish	eral soil Mottling None
	0 6 12 18 24 30 36	1-2 " Texture Sandy Loam	Depth of Consi Fria	rm	orizon above min Color Dark Yellowish Brown Light Yellowish Brown	eral soil Mottling None
	0 6 12 18 24 30 36 42	1-2 " Texture Sandy Loam	Depth of Consi Fria	organic h stency ble	orizon above min Color Dark Yellowish Brown Light Yellowish Brown	eral soil Mottling None Observed

INVESTIGATOR INFORMATION AND SIGNATURE						
Signature: Dand v. Chapman	Date: 9-27-17					
Name Printed/typed: David V. Chapman	Cert/Lic/Reg.# 293					
Title: Licensed Site Evaluator Certified Geologist 	Certified Soil ScientistOther:					

ebago Technics 75 John Roberts Road, South Portland, ME - ph: 207-200-2100


SOIL PROFILE / CLASSIFICATION INFORMATION

DETAILED DESCRIPTION OF SUBSURFACE CONDITIONS AT PROJECT SITES

Project Name: Orchard Road Subdivision Applicant Name: Gorrill & Palmer

Project Location (municipality): Cumberland

Observation Hole # TP-9 Test Pit □ Boring Depth of organic horizon above mineral soil ... 1-2 Consistency Color Mottling Texture 0 6 Sandy Brown Friable Depth below mineral soil surface (inches) Loam 12 18 Light Olive Common/ Brown Distinct 24 Firm 30 36 42 Limit of Excavation at 27" 48 Soil Classification Slope Limiting Factor Groundwater Restrictive Layer 0-3 D 14" 3 Bedrock Profile Condition Percent Depth

Obs	serva	ation Hole	e#			Test Pit	Boring	C	bse	vation Ho	le #			Test Pit	□ Boring
			<u> </u>	Depth of	organic h	orizon above mii	neral soil	-			"	Depth of	f organic h	orizon above mir	neral soil
	0	Textur	e	Consi	stency	Color	Mottling		0	Text	ure	Cons	istency	Color	Mottling
(67)	6							les)	6						
	12							surface (inches)	12						
1	18								18						
	24							eral soi	24						
	30							Depth below mineral soil	30						
	36							oth belc	36						
ז [ַ] ∠	12							Dep	42						
2	48 -	Soil	Classifi	cation	Slope	Limiting Factor	Groundwater		48	Soil	Classif	ication	Slope	Limiting Factor	Groundwater
	•	Profile	Cond	ition	Percent	Depth	Bedrock			Profile	Con	dition	Percent	- Depth	Bedrock

INVESTIGATOR INFORMATION AND SIGNATURE					
Signature: Dand v. Chapman	^{Date:} 9-27-17				
Name Printed/typed: David V. Chapman	Cert/Lic/Reg.# 293				
Title: Licensed Site Evaluator □ Certified Geologist	Certified Soil ScientistOther:				

APPENDIX D

PARAMETERS AND RESULTS

Groundwater Impact Study, Nitrates Model Input Parameters and Solution Orchard Road Subdivision Orchard Road, Cumberland, Maine Lot 1, 6, 8, 9, and 10

Annual rainfall (inches):	44
Hydrologic soil group* (above disposal field):	C to D
% Slope (above disposal field):	3 to 8%
% Infiltration* (into disposal field):	21
Assumed rainfall flow into disposal field (gal/day):	14.20
Assumed rainfall flow into disposal field during drought conditions^(gal/day):	8.52
Background NO3-N concentration (mg/L):	0
Assumed effluent NO3-N concentration (mg/L):	41
Assumed effuent flow into disposal field (gal/day):	270
Assumed NO3-N concentration in rainfall (mg/L):	0.5
Hydraulic conductivity of aquifer (ft/day):	2
Hydraulic gradient of aquifer (ft/ft):	0.015
Effective porosity of aquifer:	0.21
Seepage velocity of aquifer (ft/day):	0.14
Retardation factor	1
Half-Life (0 for no decay)	0
Simulation duration to reach NO3-N concentration equilibrium (days)	2,312
Longitudinal dispersivity at end of simulation duration (ft)	2.08
Lateral dispersivity at end of simulation duration (ft)	0.69
Vertical dispersivity at end of simulation duration (ft)	0.10
Disposal bed length (ft)	45
Disposal bed width (ft)	20
Length of 10 mg/L plume during drought conditions (ft)	98

Notes:

- * from The State of Maine Department of Environmental Protection, 1991, The guidelines for expediating the processing of applications under the site location of development act.
- ^ drought conditions equals 60% of average annual rainfall
- % percent
- gal/day gallons per day
 - ft feet
- mg/L milligrams per liter
- NO3-N Nitrate-Nitrogen

Groundwater Impact Study, Nitrates Model Input Parameters and Solution Orchard Road Subdivision Orchard Road, Cumberland Lots 2, 3, 4, 5, and 7

Annual rainfall (inches):	44
Hydrologic soil group* (above disposal field):	C to D
% Slope (above disposal field):	1 to 5%
% Infiltration* (into disposal field):	21
Assumed rainfall flow into disposal field (gal/day):	14.20
Assumed rainfall flow into disposal field during drought conditions^(gal/day):	8.52
Background NO3-N concentration (mg/L):	0
Assumed effluent NO3-N concentration (mg/L):	41
Assumed effuent flow into disposal field (gal/day):	270
Assumed NO3-N concentration in rainfall (mg/L):	0.5
Hydraulic conductivity of aquifer (ft/day):	2
Hydraulic gradient of aquifer (ft/ft):	0.015
Effective porosity of aquifer:	0.21
Seepage velocity of aquifer (ft/day):	0.14
Retardation factor	1
Half-Life (0 for no decay)	0
Simulation duration to reach NO3-N concentration equilibrium (days)	1,001
Longitudinal dispersivity at end of simulation duration (ft)	3.85
Lateral dispersivity at end of simulation duration (ft)	1.28
Vertical dispersivity at end of simulation duration (ft)	0.19
Disposal bed length (ft)	45
Disposal bed width (ft)	20
Length of 10 mg/L plume during drought conditions (ft)	66

Notes:

- * from The State of Maine Department of Environmental Protection, 1991, The guidelines for expediating the processing of applications under the site location of development act.
- ^ drought conditions equals 60% of average annual rainfall
- % percent
- gal/day gallons per day
 - ft feet
- mg/L milligrams per liter
- NO3-N Nitrate-Nitrogen

PAUL R. LEPAGE GOVERNOR STATE OF MAINE DEPARTMENT OF AGRICULTURE, CONSERVATION & FORESTRY 93 STATE HOUSE STATION

93 STATE HOUSE STA AUGUSTA, MAINE 04333

WALTER E. WHITCOMB COMMISSIONER

October 23, 2017

James Attianese Gorrill Palmer 707 Sable Oaks Drive, Suite 30 South Portland, ME 04106

Via email: jattianese@gorrillpalmer.com

Re: Rare and exemplary botanical features in proximity to: Job #3236.01, Orchard Road Subdivision, Cumberland, Maine

Dear Mr. Attianese:

I have searched the Natural Areas Program's Biological and Conservation Data System files in response to your request received October 20, 2017 for information on the presence of rare or unique botanical features documented from the vicinity of the project in Cumberland, Maine. Rare and unique botanical features include the habitat of rare, threatened, or endangered plant species and unique or exemplary natural communities. Our review involves examining maps, manual and computerized records, other sources of information such as scientific articles or published references, and the personal knowledge of staff or cooperating experts.

Our official response covers only botanical features. For authoritative information and official response for zoological features you must make a similar request to the Maine Department of Inland Fisheries and Wildlife, 284 State Street, Augusta, Maine 04333.

According to the information currently in our Biological and Conservation Data System files, there are no rare botanical features documented specifically within the project area. This lack of data may indicate minimal survey efforts rather than confirm the absence of rare botanical features. You may want to have the site inventoried by a qualified field biologist to ensure that no undocumented rare features are inadvertently harmed.

If a field survey of the project area is conducted, please refer to the enclosed supplemental information regarding rare and exemplary botanical features documented to occur in the vicinity of the project site. The list may include information on features that have been known to occur historically in the area as well as recently field-verified information. While historic records have not been documented in several years, they may persist in the area if suitable habitat exists. The enclosed list identifies features with potential to occur in the area, and it should be considered if you choose to conduct field surveys.

This finding is available and appropriate for preparation and review of environmental assessments, but it is not a substitute for on-site surveys. Comprehensive field surveys do not exist for all natural areas in Maine, and in the absence of a specific field investigation, the Maine Natural Areas Program cannot provide a definitive statement on the presence or absence of unusual natural features at this site.

MOLLY DOCHERTY, DIRECTOR MAINE NATURAL AREAS PROGRAM

PHONE: (207) 287-8044 Fax: (207) 287-8040 WWW.MAINE.GOV/DACF/MNAP Letter to Gorrill Palmer Comments RE: Orchard Road, Cumberland October 23, 2017 Page 2 of 2

The Natural Areas Program is continuously working to achieve a more comprehensive database of exemplary natural features in Maine. We would appreciate the contribution of any information obtained should you decide to do field work. The Natural Areas Program welcomes coordination with individuals or organizations proposing environmental alteration, or conducting environmental assessments. If, however, data provided by the Natural Areas Program are to be published in any form, the Program should be informed at the outset and credited as the source.

The Natural Areas Program has instituted a fee structure of \$75.00 an hour to recover the actual cost of processing your request for information. You will receive an invoice for \$150.00 for two hours of our services.

Thank you for using the Natural Areas Program in the environmental review process. Please do not hesitate to contact me if you have further questions about the Natural Areas Program or about rare or unique botanical features on this site.

Sincerely,

Krit Ping

Kristen Puryear | Ecologist | Maine Natural Areas Program 207-287-8043 | <u>kristen.puryear@maine.gov</u>

Rare and Exemplary Botanical Features within 4 miles of Project: #3236.01, Orchard Road Subdivision, Cumberland, Maine

Common Name	State Status	State Rank	Global Rank	Date Last Observed	Occurrence Number	Habitat
Broad Beech Fern						
	\mathbf{SC}	S2	G5	2001-08-28	28	Hardwood to mixed forest (forest, upland)
Engelmann's Spike	erush					
	$\rm PE$	SH	G4G5Q	1916-08-31	2	Open wetland, not coastal nor rivershore (non-forested, wetland)
Enriched Northern	n Hardwoo	ds Forest				
	<null></null>	$\mathbf{S3}$	GNR	2001-08-28	34	Hardwood to mixed forest (forest, upland)
Fern-leaved False	Foxglove					
	\mathbf{SC}	S3	G5	1902-09-02	13	Dry barrens (partly forested, upland),Hardwood to mixed forest (forest, upland)
Great Blue Lobelia	a					
	\mathbf{PE}	SX	G5	1905-09	3	Forested wetland, Non-tidal rivershore (non-forested, seasonally wet)
Horned Pondweed	l					
	\mathbf{SC}	S2	G5	1913-09-13	9	Tidal wetland (non-forested, wetland)
Marsh Milkwort						
	PE	SH	G5T4	1903-08-18	1	Dry barrens (partly forested, upland),Open wetland, not coastal nor rivershore (non-forested, wetland)
Oak - Hickory For	est					
	<null></null>	$\mathbf{S1}$	G4G5	2014-08-21	5	Hardwood to mixed forest (forest, upland)
Rattlesnake Hawk	weed					
	Ε	$\mathbf{S1}$	G5T4Q	1909-07	1	Dry barrens (partly forested, upland)
Spotted Pondweed	1					
	Т	S1	G5	1995-10-01	3	Open water (non-forested, wetland)
Spotted Wintergre	en					
	Е	S2	G5	2009-07-26	30	Conifer forest (forest, upland),Hardwood to mixed forest (forest, upland)
Maine Natural Areas Pro	ogram		Page 1 of 2			www.maine.gov/dacf/mnap

Rare and Exemplary Botanical Features within 4 miles of Project: #3236.01, Orchard Road Subdivision, Cumberland, Maine

Common Name	State Status	State Rank	Global Rank	Date Last Observed	Occurrence Number	Habitat
Upper Floodplain	Hardwood I	Forest				
	<null></null>	S3	GNR	2010-08-24	18	Forested wetland
Water-plantain Sp	earwort					
	\mathbf{PE}	SH	G4	1903-07-29	2	Open water (non-forested, wetland)

Maine Natural Areas Program

STATE RARITY RANKS

- **S1** Critically imperiled in Maine because of extreme rarity (five or fewer occurrences or very few remaining individuals or acres) or because some aspect of its biology makes it especially vulnerable to extirpation from the State of Maine.
- **S2** Imperiled in Maine because of rarity (6-20 occurrences or few remaining individuals or acres) or because of other factors making it vulnerable to further decline.
- **S3** Rare in Maine (20-100 occurrences).
- S4 Apparently secure in Maine.
- **S5** Demonstrably secure in Maine.
- SU Under consideration for assigning rarity status; more information needed on threats or distribution.
- **SNR** Not yet ranked.
- **SNA** Rank not applicable.
- **S#?** Current occurrence data suggests assigned rank, but lack of survey effort along with amount of potential habitat create uncertainty (e.g. S3?).
- **Note:** State Rarity Ranks are determined by the Maine Natural Areas Program for rare plants and rare and exemplary natural communities and ecosystems. The Maine Department of Inland Fisheries and Wildlife determines State Rarity Ranks for animals.

GLOBAL RARITY RANKS

- G1 Critically imperiled globally because of extreme rarity (five or fewer occurrences or very few remaining individuals or acres) or because some aspect of its biology makes it especially vulnerable to extinction.
- **G2** Globally imperiled because of rarity (6-20 occurrences or few remaining individuals or acres) or because of other factors making it vulnerable to further decline.
- G3 Globally rare (20-100 occurrences).
- G4 Apparently secure globally.
- G5 Demonstrably secure globally.
- **GNR** Not yet ranked.
- Note: Global Ranks are determined by NatureServe.

STATE LEGAL STATUS

- **Note:** State legal status is according to 5 M.R.S.A. § 13076-13079, which mandates the Department of Conservation to produce and biennially update the official list of Maine's **Endangered** and **Threatened** plants. The list is derived by a technical advisory committee of botanists who use data in the Natural Areas Program's database to recommend status changes to the Department of Conservation.
- **E** ENDANGERED; Rare and in danger of being lost from the state in the foreseeable future; or federally listed as Endangered.
- **T** THREATENED; Rare and, with further decline, could become endangered; or federally listed as Threatened.

NON-LEGAL STATUS

- **SC** SPECIAL CONCERN; Rare in Maine, based on available information, but not sufficiently rare to be considered Threatened or Endangered.
- **PE** Potentially Extirpated; Species has not been documented in Maine in past 20 years or loss of last known occurrence has been documented.

Visit our website for more information on rare, threatened, and endangered species! http://www.maine.gov/dacf/mnap

ELEMENT OCCURRENCE RANKS - EO RANKS

Element Occurrence ranks are used to describe the quality of a rare plant population or natural community based on three factors:

- <u>Size</u>: Size of community or population relative to other known examples in Maine. Community or population's viability, capability to maintain itself.
- <u>Condition</u>: For communities, condition includes presence of representative species, maturity of species, and evidence of human-caused disturbance. For plants, factors include species vigor and evidence of human-caused disturbance.
- **Landscape context**: Land uses and/or condition of natural communities surrounding the observed area. Ability of the observed community or population to be protected from effects of adjacent land uses.

These three factors are combined into an overall ranking of the feature of **A**, **B**, **C**, or **D**, where **A** indicates an **excellent** example of the community or population and **D** indicates a **poor** example of the community or population. A rank of **E** indicates that the community or population is **extant** but there is not enough data to assign a quality rank. The Maine Natural Areas Program tracks all occurrences of rare (S1-S3) plants and natural communities as well as A and B ranked common (S4-S5) natural communities.

Note: Element Occurrence Ranks are determined by the Maine Natural Areas Program for rare plants and rare and exemplary natural communities and ecosystems. The Maine Department of Inland Fisheries and Wildlife determines Element Occurrence ranks for animals.

Visit our website for more information on rare, threatened, and endangered species! http://www.maine.gov/dacf/mnap

CHANDLER E. WOODCOCK COMMISSIONER

October 27, 2017

James Attianese Gorrill Palmer 707 Sable Oaks Drive, Suite 30 South Portland, ME 04106

RE: Information Request - Orchard Road subdivision, Cumberland

Dear James:

Per your request received October 23, 2017, we have reviewed current Maine Department of Inland Fisheries and Wildlife (MDIFW) information for known locations of Endangered, Threatened, and Special Concern species; designated Essential and Significant Wildlife Habitats; and fisheries habitat concerns within the vicinity of the *Orchard Road subdivision Project* in Cumberland.

Our Department has not mapped any Essential Habitats or fisheries habitats that would be directly affected by your project.

Endangered, Threatened, and Special Concern Species

Bats

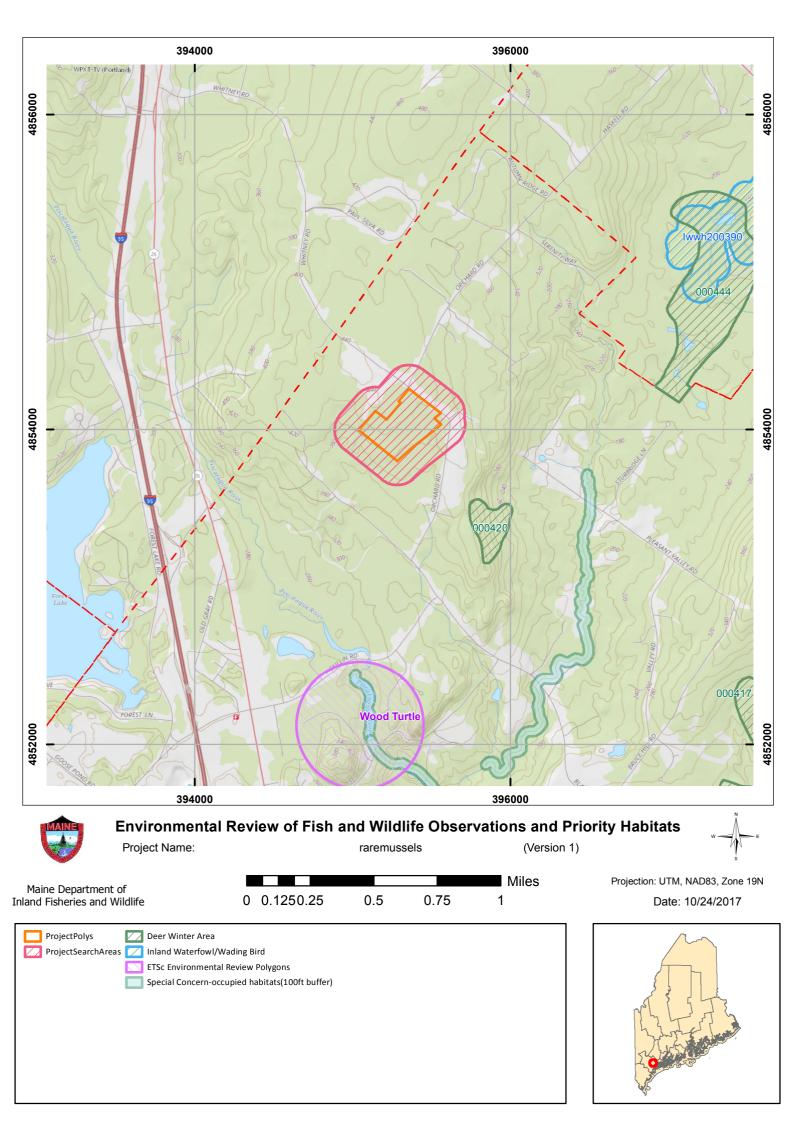
Of the eight species of bats that occur in Maine, the three *Myotis* species are protected under Maine's Endangered Species Act (MESA) and are afforded special protection under 12 M.R.S §12801 - §12810. The three *Myotis* species include little brown bat (*M. lucifugus*, State Endangered); northern long-eared bat (*M. septentrionalis*, State Endangered); and eastern small-footed bat (*M. leibii*, State Threatened). The five remaining bat species are listed as Special Concern: big brown bat (*Eptesicus fuscus*); red bat (*Lasiurus borealis*), hoary bat (*Lasiurus cinereus*), silver-haired bat (*Lasionycteris noctivagans*), and tricolored bat (*Perimyotis subflavus*).

While a comprehensive statewide inventory for bats has not been completed, it is likely that several of these species occur within the project area during migration and/or the breeding season. We recommend that you contact the U.S. Fish and Wildlife Service--Maine Fish and Wildlife Complex (Wende Mahaney, 207-902-1569) for further guidance, as the northern long-eared bat is also listed as a Threatened Species under the Federal Endangered Species Act. Otherwise, our Agency does not anticipate significant impacts to any of the bat species as a result of this project.

Significant Wildlife Habitat

Significant Vernal Pools

At this time, MDIFW Significant Wildlife Habitat (SWH) maps indicate no known presence of SWHs within the project area, which include Waterfowl and Wading Bird Habitats, Seabird Nesting Islands, Shorebird Areas, and Significant Vernal Pools. However, a comprehensive statewide inventory for Significant Vernal Pools has not been completed. Therefore, we strongly recommend that surveys for vernal pools be conducted within the project boundary by qualified wetland scientists prior to final project design to determine whether there are Significant Vernal Pools present in the area. These surveys should extend up to 250 feet beyond the anticipated project footprint because of potential performance standard requirements for off-site Significant Vernal Pools, assuming such pools are located on land owned or controlled by the applicant. Once surveys are completed, our Department will need to review and verify any vernal pool data prior to final determination of significance.


This consultation review has been conducted specifically for known MDIFW jurisdictional features and should not be interpreted as a comprehensive review for the presence of other regulated features that may occur in this area. Prior to the start of any future site disturbance we recommend additional consultation with the municipality, and other state resource agencies including the Maine Natural Areas Program and Maine Department of Environmental Protection in order to avoid unintended protected resource disturbance.

Please feel free to contact my office if you have any questions regarding this information, or if I can be of any further assistance.

Best regards,

JRAN

John Perry Environmental Review Coordinator

United States Department of the Interior

FISH AND WILDLIFE SERVICE Maine Ecological Services Field Office P. O. Box A East Orland, ME 04431 Phone: (207) 469-7300 Fax: (207) 902-1588 http://www.fws.gov/mainefieldoffice/index.html

In Reply Refer To: Consultation Code: 05E1ME00-2017-SLI-1012 Event Code: 05E1ME00-2017-E-01978 Project Name: Orchard Road Subdivision September 14, 2017

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies the threatened, endangered, candidate, and proposed species and designated or proposed critical habitat that may occur within the boundary of your proposed project or may be affected by your proposed project. This species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC Web site at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having

similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the Endangered Species Consultation Handbook at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

This species list also identifies candidate species under review for listing and those species that the Service considers species of concern. Candidate species have no protection under the Act but are included for consideration because they could be listed prior to completion of your project. Species of concern are those taxa whose conservation status is of concern to the Service (i.e., species previously known as Category 2 candidates), but for which further information is needed.

If a proposed project may affect only candidate species or species of concern, you are not required to prepare a Biological Assessment or biological evaluation or to consult with the Service. However, the Service recommends minimizing effects to these species to prevent future conflicts. Therefore, if early evaluation indicates that a project will affect a candidate species or species of concern, you may wish to request technical assistance from this office to identify appropriate minimization measures.

Please be aware that bald and golden eagles are not protected under the Endangered Species Act but are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.). Projects affecting these species may require development of an eagle conservation plan: <u>http://www.fws.gov/windenergy/eagle_guidance.html</u> Information on the location of bald eagle nests in Maine can be found on the Maine Field Office Web site: <u>http://www.fws.gov/mainefieldoffice/Project% 20review4.html</u>

Additionally, wind energy projects should follow the wind energy guidelines: <u>http://www.fws.gov/windenergy/</u> for minimizing impacts to migratory birds and bats. Projects may require development of an avian and bat protection plan.

Migratory birds are also a Service trust resource. Under the Migratory Bird Treaty Act, construction activities in grassland, wetland, stream, woodland, and other habitats that would result in the take of migratory birds, eggs, young, or active nests should be avoided. Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at:

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm and at: http://www.towerkill.com; and at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

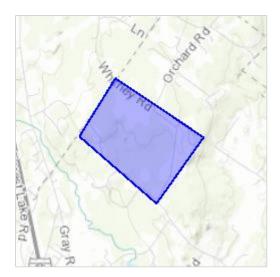
Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:


Maine Ecological Services Field Office P. O. Box A East Orland, ME 04431 (207) 469-7300

Project Summary

Consultation Code:	05E1ME00-2017-SLI-1012
Event Code:	05E1ME00-2017-E-01978
Project Name:	Orchard Road Subdivision
Project Type:	DEVELOPMENT
Project Description:	Residential Subdivision

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/43.830749558722346N70.30330228389299W

Counties:

Cumberland, ME

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

Mammals

NAME

Northern Long-eared Bat *Myotis septentrionalis* No critical habitat has been designated for this species.

Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

There are no critical habitats within your project area under this office's jurisdiction.

STATUS

Threatened

October 19, 2017

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

Mr. Kirk Mohney State Historic Preservation Officer Maine Historic Preservation Commission 55 Capitol Street, State House Station 65 Augusta, ME 04333

Subject: Presence of Historical Areas Orchard Road Subdivision Cumberland, Maine

Dear Mr. Mohney,

TZ Properties has retained Gorrill Palmer to prepare design plans for a ten lot single family residential subdivision located off Orchard Road in Cumberland, Maine. The development includes construction of a 1,500 linear foot roadway and associated utilities and stormwater controls with development of the lots by the lot owners.

The attached Location Map shows the project location.

The project will include a roadway stream crossing of an unnamed stream tributary to the Piscataqua River.

As part of permitting for the project, Gorrill Palmer requests information from your department relative to the presence of any nearby structure or area with historical, architectural or archeological significance as defined by the National Historic Preservation Act.

Thank you for your consideration. If you have any questions regarding the proposed project, please contact our office.

Sincerely,

Gorrill Palmer

Hinn

James Attianese

Enclosure

JWA/jwa/U:\3236.01 TZ Properties Orchard Rd Cumberland\P Applications\Local\Resource Letters\Mohney_10-3-17.doc

STORMWATER MANAGEMENT

12.1 Overview

The proposed 10 lot single family residential subdivision will create approximately 46,357 square feet of impervious area. Pursuant to the Cumberland Subdivision Ordinance 250-38, projects which create more than 10,000 square feet of impervious area shall submit a stormwater management plan. Section 250-39 of the subdivision ordinance states that the peak discharge from the developed site shall not exceed the peak discharge for the undeveloped site for the two- and twenty five-year storms.

12.2 Introduction

Gorrill Palmer has been retained by TZ Properties, LLC to prepare a Stormwater Report for the proposed ten lot subdivision off Orchard Road in Cumberland, Maine. Figure I is a map showing the project location. The project will also need a Stormwater Permit from the MDEP. This narrative contains the stormwater management report for the construction of the project. The plans prepared by Gorrill Palmer include the infrastructure necessary to serve the project.

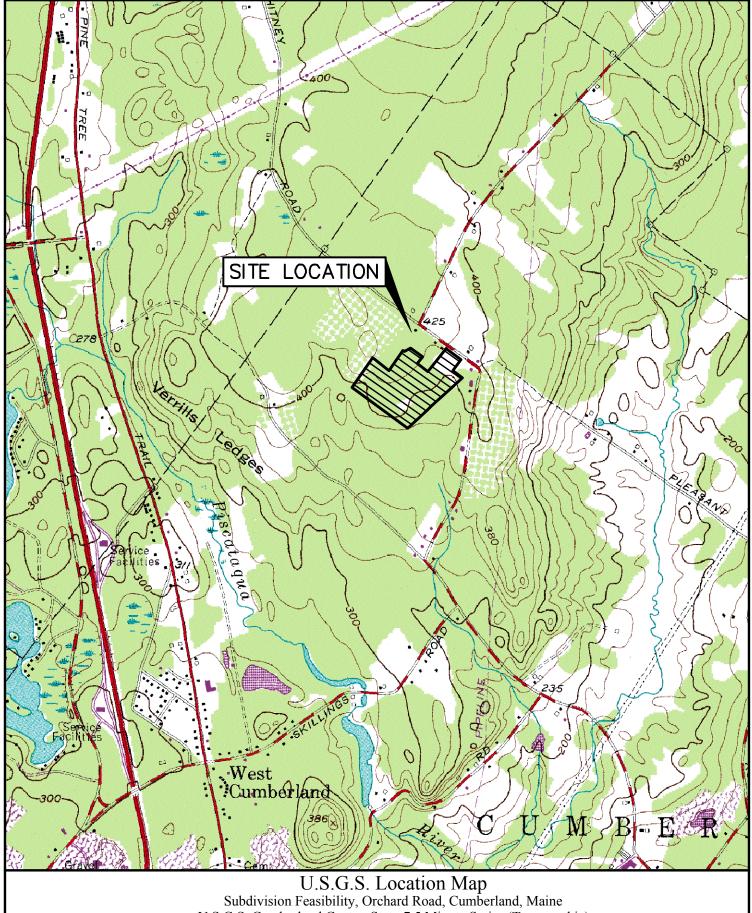
12.3 Development Description

The development site comprises approximately 24.9 acres and is currently undeveloped. The Applicant proposes the construction of a dead end roadway approximately 1,500 feet in length, construction of related stormwater drainage conveyances, and construction of two proposed grassed underdrained soil filters. The lot development will be by the individual lot owners.

Abutting land uses include:

- North Residential
- East Residential
- South Residential/Undeveloped
- West Residential/Apple Orchard

Runoff from the site is tributary to an unnamed stream which conveys the flow to the Piscataqua River. Neither the unnamed stream, nor the Piscataqua River are currently listed as "Urban Impaired Streams", therefore, the development will not be required to meet the Chapter 500 Urban Impaired Stream Standard.


The construction of the subdivision roadway will result in approximately 1.08 acres of new impervious area.

12.4 Surface Water

There are no lakes located on, adjacent to or downstream of the project site.

12.5 General Topography

Topography in the area of the proposed construction is moderately steep with slopes of approximately 5% to 17%.

U.S.G.S. Cumberland Center, State-7.5 Minute Series (Topographic)

Design: WCH	Date: OCT 2017
Draft: LAN	Job No.: 3236.01
Checked: WCH	Scale: None
File Name: 3236-LOCMAP.dw	Pa

Relationships. Responsiveness. Results. www.gorrillpalmer.com 207.772.2515 Figure

1

12.6 Flooding

Based upon the FEMA maps, no part of the site is located within a Zone A 100-year floodplain.

12.7 <u>Natural Drainage Ways</u>

The project will require a stream crossing and a wetland crossing which will be submitted to MDEP and the ACOE for permitting.

12.8 Alterations to Land Cover

Changes in land cover will include removal of wooded areas through portions of the project site and the addition of roof, paved surfaces and lawn areas.

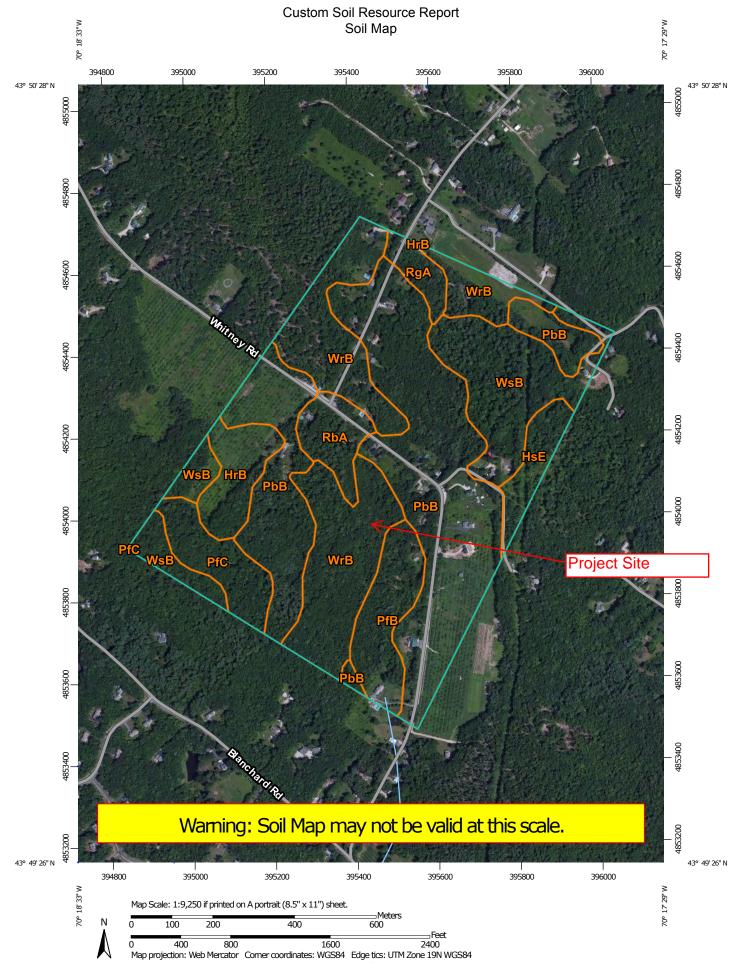
12.9 Stormwater Management Control

This stormwater management report will address the Town of Cumberland peak flow requirements. Although the Applicant does not propose construction of the house lots, an allowance of 3,000 square feet of impervious area and 12,000 square feet of lawn was utilized in the post development condition for each lot to analyze the peak flow.

12.9.1 Approach and Analysis for Quantity Control

Since the proposed subdivision will require approval from the MDEP, grassed underdrained soil filters designed to conform with the MDEP BMP's have been used to provide stormwater peak control. The water quality control provided by the grassed underdrained soil filters will be addressed in the MDEP Stormwater Law permit submission which will be copied to the Town upon submission.

12.9.2 Water Quantity Sizing Requirements


The stormwater management study provides an analysis of predevelopment and post development stormwater runoff rates.

The soil types are shown on the watershed maps included in Attachment A and were obtained from the NRCS Cumberland County Medium Intensity Soil Survey which follows this page.

The SCS TR-20 methodology, using the HydroCad program, was employed by Gorrill Palmer to analyze predevelopment and post development conditions. A 24-hour, SCS Type III storm distribution for the two, ten, and twenty-five year storm frequencies were used. The corresponding rainfall amounts for these storms are 3.1", 4.6", and 5.8" respectively.

Land use cover, delineations of watershed hydraulic flow paths, and hydraulic soils data were obtained using the following data:

- 1. Cumberland Center 7.5 Minute Quadrangle Maps prepared by the U.S.G.S.
- 2. On-site topographic survey with 1' contour intervals from an existing conditions plan of the site.

	MAP L	EGEND		MAP INFORMATION		
Area of In	Area of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at 1:24,000.		
	Area of Interest (AOI)	۵	Stony Spot			
Soils	Soil Map Unit Polygons	Ø	Very Stony Spot	Warning: Soil Map may not be valid at this scale.		
~	Soil Map Unit Lines	\$	Wet Spot	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line		
	Soil Map Unit Points		Other Special Line Features	placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.		
Special	Point Features			Sons that could have been shown at a more detailed scale.		
అ	Blowout	Water Fea	tures Streams and Canals	Please rely on the bar scale on each map sheet for map		
X	Borrow Pit	~		measurements.		
×	Clay Spot	Transport	ation Rails			
\diamond	Closed Depression	~	Interstate Highways	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov		
X	Gravel Pit	JS Routes		Coordinate System: Web Mercator (EPSG:3857)		
0 0 0	Gravelly Spot	~	Major Roads	Maps from the Web Soil Survey are based on the Web Mercator		
0	Landfill	~	Local Roads	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the		
Α.	Lava Flow	Backgrou	nd	Albers equal-area conic projection that preserves area, such as the		
علله	Marsh or swamp	No.	Aerial Photography	calculations of distance or area are required.		
*	Mine or Quarry			This product is generated from the USDA-NRCS certified data as of		
0	Miscellaneous Water			the version date(s) listed below.		
0	Perennial Water			Soil Survey Area: Cumberland County and Part of Oxford County,		
\vee	Rock Outcrop			Maine		
+	Saline Spot			Survey Area Data: Version 12, Sep 15, 2016		
0 0 0 0	Sandy Spot			Soil map units are labeled (as space allows) for map scales 1:50,000		
-	Severely Eroded Spot			or larger.		
\$	Sinkhole			Date(s) aerial images were photographed: Jun 20, 2010—Jul 18,		
≫	Slide or Slip			2010		
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		

	Cumberland County and Part of	f Oxford County, Maine (ME005)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
HrB	Hollis fine sandy loam, 3 to 8 percent slopes	8.8	4.5%
HsE	Hollis very rocky fine sandy loam, 20 to 35 percent slopes	6.0	3.1%
PbB	Paxton fine sandy loam, 3 to 8 percent slopes	76.5	39.3%
PfB	Paxton very stony fine sandy loam, 3 to 8 percent slopes	11.9	6.1%
PfC	Paxton very stony fine sandy loam, 8 to 15 percent slopes	9.5	4.9%
RbA	Ridgebury fine sandy loam, 0 to 3 percent slopes	7.1	3.6%
RgA	Ridgebury very stony fine sandy loam, 0 to 3 percent slopes	3.9	2.0%
WrB	Woodbridge fine sandy loam, 0 to 8 percent slopes	42.9	22.0%
WsB	Woodbridge very stony fine sandy loam, 0 to 8 percent slopes	28.2	14.5%
Totals for Area of Interest		194.7	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different

- 3. Aerial Photography of the project site and aerial contours, obtained from the Maine Office of GIS.
- 4. Field Reconnaissance.

Predevelopment Conditions

The drainage study analyzes the watersheds in the predevelopment condition as depicted on the Predevelopment Watershed Map.

The predevelopment condition was analyzed as seven subcatchments with seven points of interest (POI). The tributary areas to the POIs which are affected by the proposed redevelopment are analyzed for this stormwater report.

Subcatchment I consists of wooded area and orchard tributary to POI I. The orchard area was modelled as a meadow landcover. The subcatchment is the area that is tributary to an existing swale at the westerly corner of the property.

Subcatchment 2 is a wooded area tributary to a swale that exits the southwesterly edge of the parcel which is designated as POI 2.

Subcatchment 3 is a wooded area tributary to a swale that exits the southwesterly edge of the parcel which is designated as POI 3.

Subcatchment 4 contains onsite and offsite area consisting of woodland, residential land, and orchard, which is tributary to a drainage swale that exits the southerly edge of the parcel. POI 4 is located at the parcel property line. The existing drainage swale conveys runoff from an offsite farm pond across the subdivision parcel.

Subcatchment 5 is a wooded area that conveys runoff across the southeasterly property line. POI 5 is located within a wetland area at the parcel boundary.

Subcatchment 6 is a wooded area that also conveys runoff to the southeasterly property line with POI 6 located within a wetland area at the parcel boundary.

Subcatchment 7 contains onsite and offsite area tributary to the unnamed stream which exits the parcel at the southeasterly property line. The subcatchment consists of woodland, roadway, residential land, and orchard.

A watershed map for the predevelopment condition is attached to this section as drawing number W1 in Attachment A. Table 1 presents the peak flow rates at the POI for the design storms.

	opment Peak Flow Rates (cfs) Peak Flow (cfs)					
Point of Interest	2 Year 10 Year 25 Ye					
POI #1	3.5	7.4	10.8			
POI # 2	0.7	1.7	2.6			
POI # 3	0.7	1.7	2.7			
POI # 4	6.2	13.8	20.5			
POI # 5	2.1	5.3	8.2			
POI # 6	2.1	5.0	7.7			
POI # 7	9.2	20.0	29.5			

Copies of the calculations for the predevelopment conditions are included in Attachment B.

Post development Conditions

Analysis for the post development condition consists of determining post development peak flows and limiting the post development flows to predevelopment levels. Detention will be provided within the grassed underdrained soil filters.

The seven predevelopment subcatchments have been modified to reflect the proposed project, the post development condition contains nine subcatchments tributary to seven points of interest. The points of interest are the same as the predevelopment points of interest. The overall watershed area remains the same as in the predevelopment condition.

Subcatchment 1 is predevelopment subcatchment 1 reduced in size as a result of the proposed roadway construction.

Subcatchment 2 is predevelopment subcatchment 1 reduced in size as a result of the proposed roadway construction.

Subcatchment 3 is predevelopment subcatchment 1 reduced in size as a result of the proposed roadway construction.

Subcatchment 4 is predevelopment subcatchment 4 which is not tributary to the proposed grassed underdrained soil filter.

Subcatchment 4A is the area tributary to the grassed underdrained soil filter. The outflow of the grassed underdrained soil filter is tributary to POI 4.

Subcatchment 5 is the southerly portion of predevelopment subcatchment 5 tributary to POI 5.

Subcatchment 6 is the southerly portion of predevelopment subcatchment 6 tributary to POI 6.

Subcatchment 6A is the northerly portion of predevelopment subcatchment 5 and 6 which is tributary to the grassed underdrained soil filter. The outflow of the grassed underdrained soil filter is tributary to POI 6.

Subcatchment 7 is the post development area tributary to the unnamed stream and is tributary to POI 7.

A watershed map for the post development condition is attached as drawing number W2 in Attachment A. Attachment B contains the TR-20 calculations.

A comparison of predevelopment and post development peak flow at the POI without detention is presented in the following table.

Table 2 v		mpariso it deter			ws	
	推动机		Peak F	ow (cf	s)	
Point of Interest	2 Year		10 Year		25 Year	
	Pre	Post	Pre	Post	Pre	Post
POI #1	3.5	3.5	7.4	7.1	10.8	10.3
POI #2	0.7	0.6	1.7	1.3	2.6	2.0
POI #3	0.7	0.7	1.7	1.7	2.7	2.6
POI #4	6.2	7.2	13.8	15.5	20.5	22.8
POI #5	2.1	1.8	5.3	4.3	8.2	6.5
POI #6	2.1	4.3	5.0	9.5	7.7	13.9
POI #7	9.2	9.1	20.0	19.8	29.5	29.2

As can be seen from Table 2, detention is required to reduce the peak flow at POI 4, and 6 to predevelopment levels. The remainder of subcatchments remain at or below predevelopment flows due to changes in subcatchment area.

The grassed underdrained soil filters will provide detention of stormwater runoff for this project.

Pond I

The grassed underdrained soil filter has been analyzed to determine its performance for the 2-, 10-, and 25-year storms. The stormwater runoff from subcatchment 4A will enter the grassed underdrained soil filter through the inlet ditch. The smaller storms which generate runoff volume equal to or less than the channel protection volume will be conveyed through the soil filter underdrain and through the outlet control structure. The outlet control structure has an orifice with its invert set at the channel protection elevation, and a second orifice set at the 2-year stage. An emergency spillway is set at the 25-year storm stage and modelled as a broad crested weir. Flow over the weir during the 25 year storm, assuming the weir is the sole outlet, results in I foot of freeboard to the top of the pond berm. The following table presents the pond performance.

Table 3– Pond 1						
	Storm Event					
	2 Year	10 Year	25 Year			
Peak Inflow (cfs)	2.42	5.13	7.49			
Peak Outflow (cfs)	0.5	1.31	1.73			
Stage (Max. Elevation)	397.68	398.46	399.13			
Storage (cf)	4,251	8,587	13,048			
Depth above base (ft)	2.01	2.79	3.46			

Pond 2

The grassed underdrained soil filter has been analyzed to determine its performance for the 2-, 10-, and 25-year storms. The stormwater runoff from subcatchment 6A will enter the grassed underdrained soil filter through the stormdrain system. The smaller storms which generate runoff volume equal to or less than the channel protection volume will be conveyed through the soil filter and underdrain system. Larger storms will be conveyed through the soil filter underdrain and through the outlet control structure. The outlet control structure has a weir with its invert set above channel protection elevation. An emergency spillway is set at the 25-year storm stage and modelled as a broad crested weir. Flow over the weir during the 25 year storm, assuming the weir is the sole outlet, results in I foot of freeboard to the top of the pond berm. The following table presents the pond performance.

Table 4– Pond 2					
		Storm Event			
	2 Year	10 Year	25 Year		
Peak Inflow (cfs)	3.11	6.59	9.63		
Peak Outflow (cfs)	0.85	3.10	5.07		
Stage (Max. Elevation)	406.57	407.42	408.00		
Storage (cf)	7,919	13,593	18,613		
Depth above base (ft)	2.40	3.25	3.83		

As presented in Table 2 previously, detention of tributary runoff to POI 4, and POI 6 is required. The following table presents a comparison of peak flow with detention at the two POIs.

Table	5 – Co with	mparis detent			ows		
	Peak Flow (cfs)						
Point of Interest	21	2 Year		Year	25 `	Year	
	Pre	Post	Pre	Post	Pre	Post	
POI #4	6.2	6.2	13.8	13.8	20.5	20.2	
POI #6	2.1	1.3	5.0	4.6	7.7	7.7	

As can be seen from Table 5 above, the peak post development flow is at or below predevelopment levels at POI 4, and POI 6.

12.9.3 Conclusion - Overall Water Quantity

The peak flow at the Points of Interest have been reduced to be at or below predevelopment peak levels.

12.10 Construction BMPs

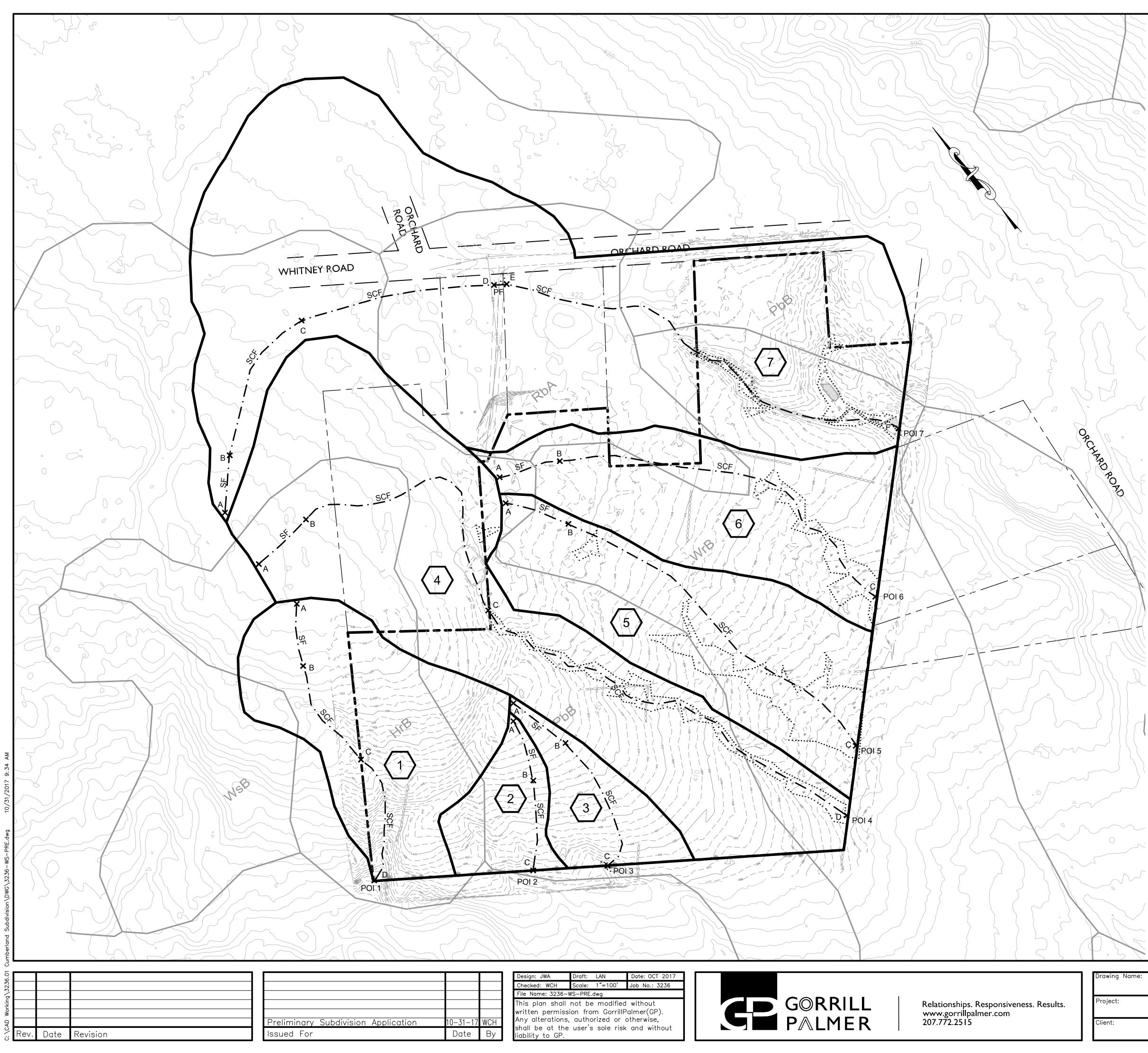
Additional water quality treatment will be provided during construction by best management practices (BMP). Standard BMPs to be employed include siltation fencing around the downslope construction perimeter, siltation fence around the vegetated underdrains, riprap, pipe, stabilized construction entrances, and erosion control fabrics applied to slopes prior to revegetation.

12.11 Maintenance of Facilities

See the Erosion and Sedimentation Control report for this project.

12.12 Conclusion

Gorrill Palmer has been retained by TZ Properties, LLC to prepare plans and permit applications for the proposed ten lot subdivision off Orchard Road in Cumberland. Based upon the attached calculations, the proposed subdivision meets or exceeds the Cumberland stormwater management requirement through the use of detention within grassed underdrained soil filters.


12.13 Attachments

Attached to this section are the following items:

Attachment A – Watershed Maps (Pre, Post,) Attachment B – TR-20 Calculations Attachment C – Ditch and Stormdrain Calculations

ATTACHMENT A

WATERSHED MAPS

Design: JWA	Draft: LAN	Date: UCI 2017
Checked: WCH	Scale: 1"=100'	Job No.: 3236
File Name: 3236-V	VS-PRE.dwg	
This plan shall written permissi Any alterations, shall be at the lighility to CP	ion from GorrillP authorized or a	almer(GP). otherwise,

<u>LEGEND</u>

SF

SCF

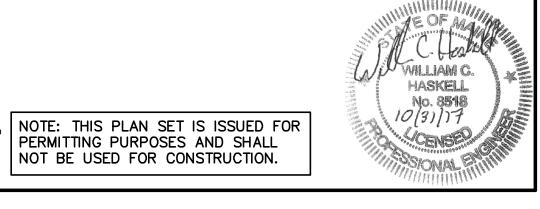
CF

POI

SUBCATCHMENT AREA

TIME OF CONCENTRATION FLOW PATH

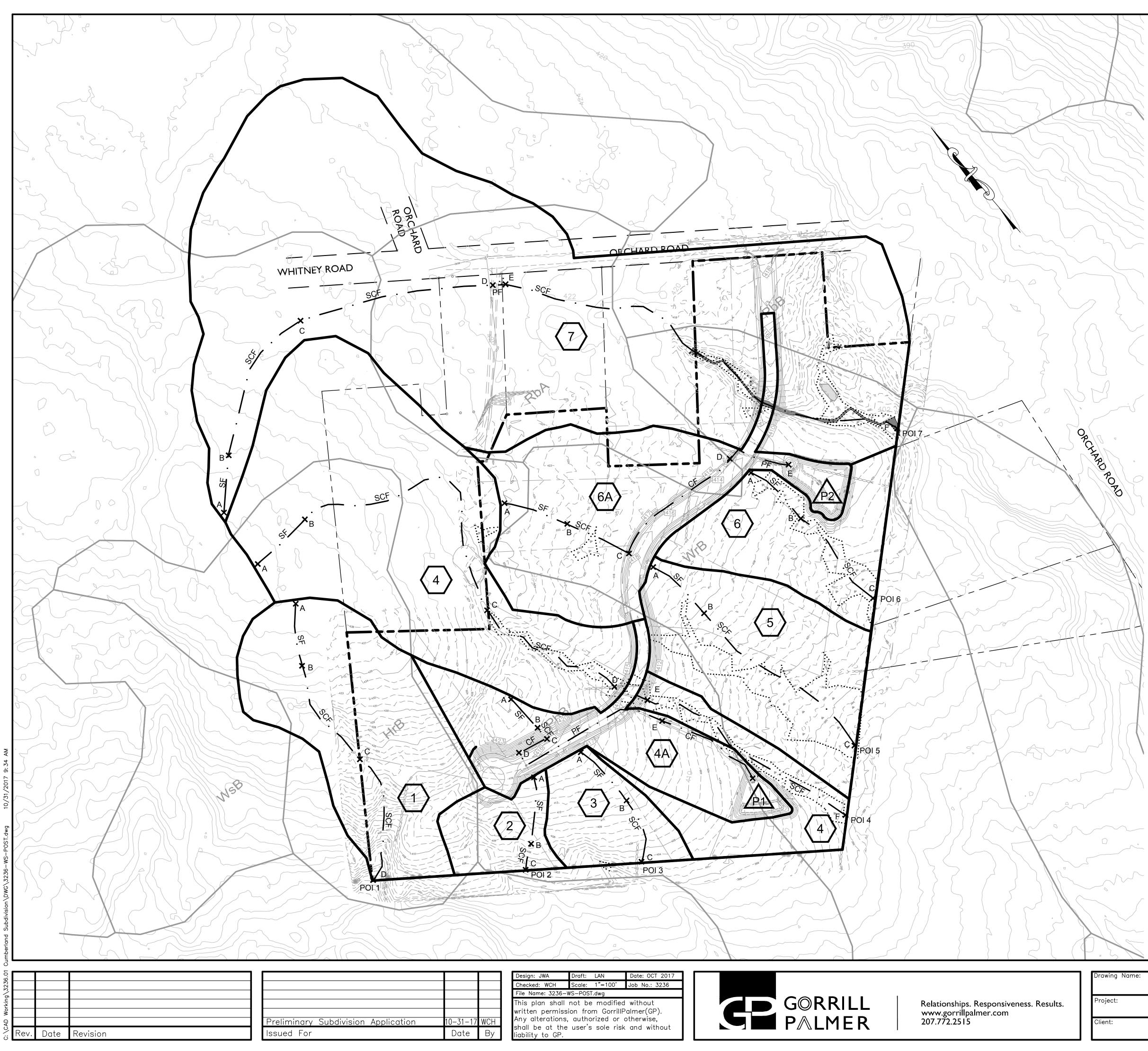
- WATERSHED BOUNDARY
 - SHEET FLOW
 - PIPE FLOW


SHALLOW CONCENTRATED FLOW

- CHANNEL FLOW
- POINT OF INTEREST

REACH	

	1	REA
++	\approx	


SOIL SCHEDULE	
SOIL	HYDROLOGIC SOIL GROUP
HrB – Hollis	D
PbB — Paxton	С
RbA — Ridgebury	C/D
WrB – Woodbridge	С
WsB — Woodbridge	С

Drawing Name:	Pre Development Watershed Map	Drawing No.
Project:	Orchard Road Subdivision Cumberland, Maine	W1
Client:	TZ Properties Falmouth, Me 04105	

200

1 inch = 100 ft.

Design: JWA	Draft:	LAN	Date: OCT 2017
Checked: WCH	Scale:	1"=100'	Job No.: 3236
File Name: 3236-WS-POST.dwg			
This plan shall written permissi Any alterations, shall be at the liability to GP.	ion fro autho	m GorrillP rized or a	almer(GP). otherwise,

<u>LEGEND</u>

SF

PF

SCF

CF

POI

SUBCATCHMENT AREA

TIME OF CONCENTRATION FLOW PATH

- WATERSHED BOUNDARY · · · · · · · · · · · · · · · WETLAND BOUNDARY
 - SHEET FLOW
 - PIPE FLOW

SHALLOW CONCENTRATED FLOW

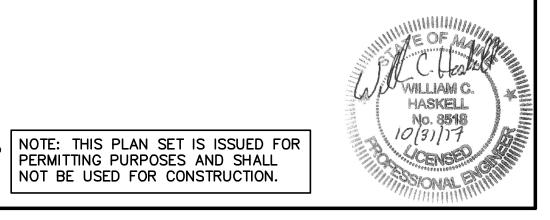
C/D

С

С

CHANNEL FLOW

REST


POINT	OF	INTER

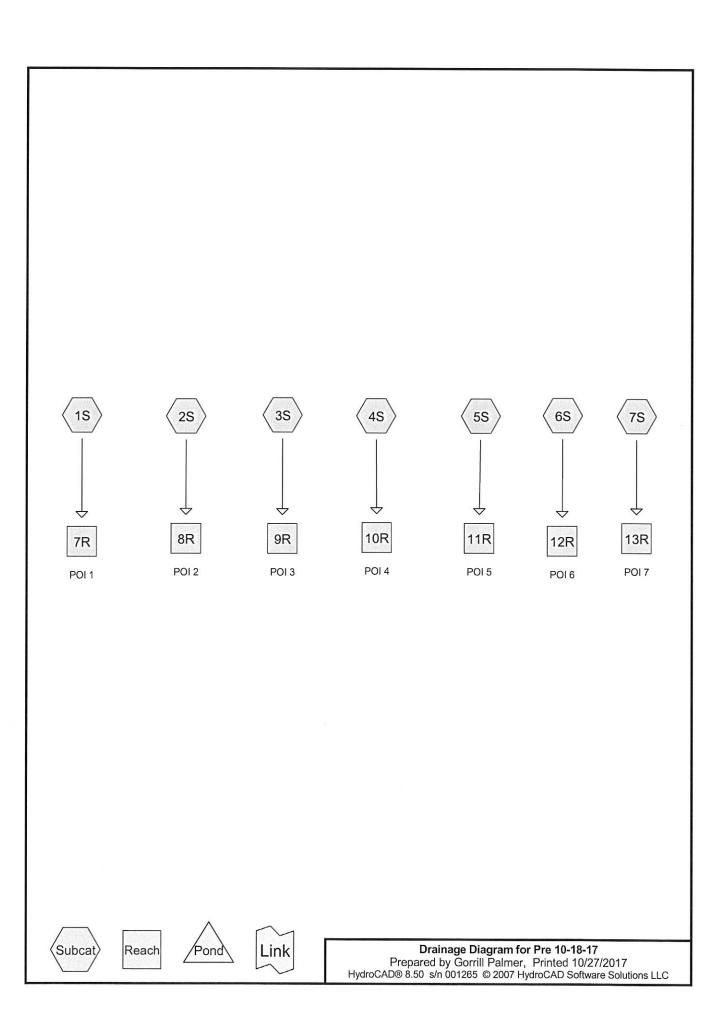
]	1 REACH	
	SOIL SCHE	DULE
	SOIL	HYDROLOGIC SOIL GROUP
	HrB – Hollis	D
	PbB — Paxton	С

RbA — Ridgebury

WrB — Woodbridge

WsB – Woodbridge

Drawing Name:	Post Development Watershed Map	Drawing N	10.
Project:	Orchard Road Subdivision Cumberland, Maine	$\neg \mid WZ$)
Client:	TZ Properties Falmouth, Me 04105		


200

1 inch = 100 ft.

ATTACHMENT B

TR-20 CALCULATIONS

•

Pre 10-18-17	Type III 24-hr 2-
Prepared by Gorrill Palmer	
HydroCAD® 8.50 s/n 001265 © 2007 HydroCAD Software S	Solutions LLC

ype III 24-hr 2-Year Storm Rainfall=3.10" Printed 10/27/2017 ns LLC Page 1

Runof	00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 f by SCS TR-20 method, UH=SCS pr-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 1S:	Runoff Area=211,000 sf 0.00% Impervious Runoff Depth=1.08" Flow Length=690' Tc=27.1 min CN=76 Runoff=3.48 cfs 0.437 af
Subcatchment 2S:	Runoff Area=56,900 sf 0.00% Impervious Runoff Depth=0.82" Flow Length=350' Tc=23.9 min CN=71 Runoff=0.70 cfs 0.089 af
Subcatchment 3S:	Runoff Area=65,200 sf 0.00% Impervious Runoff Depth=0.77" Flow Length=470' Tc=28.4 min CN=70 Runoff=0.69 cfs 0.096 af
Subcatchment 4S:	Runoff Area=485,000 sf 4.32% Impervious Runoff Depth=0.97" Flow Length=1,690' Tc=35.6 min CN=74 Runoff=6.23 cfs 0.902 af
Subcatchment 5S:	Runoff Area=244,400 sf 0.00% Impervious Runoff Depth=0.77" Flow Length=950' Tc=42.6 min CN=70 Runoff=2.13 cfs 0.360 af
Subcatchment 6S:	Runoff Area=222,000 sf 0.00% Impervious Runoff Depth=0.82" Flow Length=965' Tc=43.0 min CN=71 Runoff=2.09 cfs 0.348 af
Subcatchment 7S:	Runoff Area=800,400 sf 6.57% Impervious Runoff Depth=1.03" Flow Length=1,890' Tc=49.3 min CN=75 Runoff=9.21 cfs 1.572 af
Reach 7R: POI 1	Inflow=3.48 cfs 0.437 af Outflow=3.48 cfs 0.437 af
Reach 8R: POI 2	Inflow=0.70 cfs 0.089 af Outflow=0.70 cfs 0.089 af
Reach 9R: POI 3	Inflow=0.69 cfs 0.096 af Outflow=0.69 cfs 0.096 af
Reach 10R: POI 4	Inflow=6.23 cfs 0.902 af Outflow=6.23 cfs 0.902 af
Reach 11R: POI 5	Inflow=2.13 cfs 0.360 af Outflow=2.13 cfs 0.360 af
Reach 12R: POI 6	Inflow=2.09 cfs 0.348 af Outflow=2.09 cfs 0.348 af
Reach 13R: POI 7	Inflow=9.21 cfs 1.572 af Outflow=9.21 cfs 1.572 af

Total Runoff Area = 47.863 acRunoff Volume = 3.805 afAverage Runoff Depth = 0.95"96.47% Pervious = 46.175 ac3.53% Impervious = 1.688 ac

Pre 10-18-17	Type III 24-hr 10-Year Storm Rainfall=4.60"
Prepared by Gorrill Palmer	Printed 10/27/2017
HydroCAD® 8.50 s/n 001265 © 2007 HydroCAD Software So	lutions LLC Page 2

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3

Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method						
Subcatchment 1S:	Runoff Area=211,000 sf 0.00% Impervious Runoff Depth=2.21" Flow Length=690' Tc=27.1 min CN=76 Runoff=7.39 cfs 0.892 af					
Subcatchment 2S:	Runoff Area=56,900 sf 0.00% Impervious Runoff Depth=1.82" Flow Length=350' Tc=23.9 min CN=71 Runoff=1.70 cfs 0.198 af					
Subcatchment 3S:	Runoff Area=65,200 sf 0.00% Impervious Runoff Depth=1.74" Flow Length=470' Tc=28.4 min CN=70 Runoff=1.72 cfs 0.218 af					
Subcatchment 4S:	Runoff Area=485,000 sf 4.32% Impervious Runoff Depth=2.05" Flow Length=1,690' Tc=35.6 min CN=74 Runoff=13.78 cfs 1.902 af					
Subcatchment 5S:	Runoff Area=244,400 sf 0.00% Impervious Runoff Depth=1.74" Flow Length=950' Tc=42.6 min CN=70 Runoff=5.31 cfs 0.816 af					
Subcatchment 6S:	Runoff Area=222,000 sf 0.00% Impervious Runoff Depth=1.82" Flow Length=965' Tc=43.0 min CN=71 Runoff=5.02 cfs 0.773 af					
Subcatchment 7S:	Runoff Area=800,400 sf 6.57% Impervious Runoff Depth=2.13" Flow Length=1,890' Tc=49.3 min CN=75 Runoff=20.00 cfs 3.260 af					
Reach 7R: POI 1	Inflow=7.39 cfs 0.892 af Outflow=7.39 cfs 0.892 af					
Reach 8R: POI 2	Inflow=1.70 cfs 0.198 af Outflow=1.70 cfs 0.198 af					
Reach 9R: POI 3	Inflow=1.72 cfs 0.218 af Outflow=1.72 cfs 0.218 af					
Reach 10R: POI 4	Inflow=13.78 cfs 1.902 af Outflow=13.78 cfs 1.902 af					
Reach 11R: POI 5	Inflow=5.31 cfs 0.816 af Outflow=5.31 cfs 0.816 af					
Reach 12R: POI 6	Inflow=5.02 cfs 0.773 af Outflow=5.02 cfs 0.773 af					
Reach 13R: POI 7	Inflow=20.00 cfs 3.260 af Outflow=20.00 cfs 3.260 af					

Total Runoff Area = 47.863 acRunoff Volume = 8.058 afAverage Runoff Depth = 2.02"96.47% Pervious = 46.175 ac3.53% Impervious = 1.688 ac

Pre 10-18-17	Type III 24-hr 25-Year Storm Rainfall=5.80"
Prepared by Gorrill Palmer	Printed 10/27/2017
HydroCAD® 8.50 s/n 001265 © 2007 HydroCAD Software Sc	blutions LLC Page 2

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method					
Subcatchment 1S:	Runoff Area=211,000 sf 0.00% Impervious Runoff Depth=3.21"				
	Flow Length=690' Tc=27.1 min CN=76 Runoff=10.80 cfs 1.295 af				
Subcatchment 2S:	Runoff Area=56,900 sf 0.00% Impervious Runoff Depth=2.74" Flow Length=350' Tc=23.9 min CN=71 Runoff=2.60 cfs 0.298 af				
Subcatchment 3S:	Runoff Area=65,200 sf 0.00% Impervious Runoff Depth=2.65" Flow Length=470' Tc=28.4 min CN=70 Runoff=2.67 cfs 0.330 af				
Subcatchment 4S:	Runoff Area=485,000 sf 4.32% Impervious Runoff Depth=3.02" Flow Length=1,690' Tc=35.6 min CN=74 Runoff=20.50 cfs 2.800 af				

Subcatchment 5S:Runoff Area=244,400 sf0.00% ImperviousRunoff Depth=2.65"Flow Length=950'Tc=42.6 minCN=70Runoff=8.21 cfs1.238 af

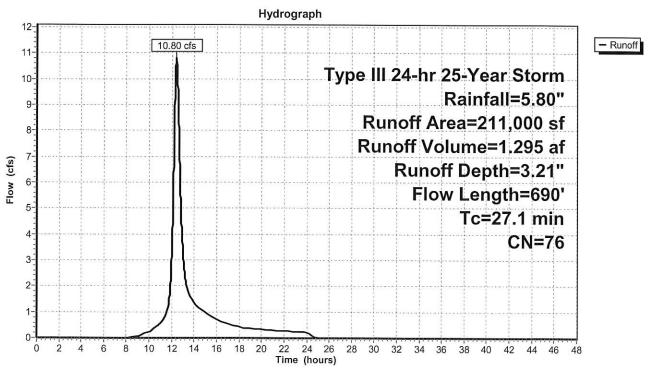
Subcatchment 6S:Runoff Area=222,000 sf0.00% ImperviousRunoff Depth=2.74"Flow Length=965'Tc=43.0 minCN=71Runoff=7.70 cfs1.163 af

Subcatchment 7S:

Runoff Area=800,400 sf 6.57% Impervious Runoff Depth=3.11" Flow Length=1,890' Tc=49.3 min CN=75 Runoff=29.54 cfs 4.766 af

Reach 7R: POI 1	Inflow=10.80 cfs Outflow=10.80 cfs	
Reach 8R: POI 2	Inflow=2.60 cfs Outflow=2.60 cfs	
Reach 9R: POI 3	Inflow=2.67 cfs Outflow=2.67 cfs	
Reach 10R: POI 4	Inflow=20.50 cfs Outflow=20.50 cfs	
Reach 11R: POI 5	Inflow=8.21 cfs Outflow=8.21 cfs	
Reach 12R: POI 6	Inflow=7.70 cfs Outflow=7.70 cfs	
Reach 13R: POI 7	Inflow=29.54 cfs Outflow=29.54 cfs	

Total Runoff Area = 47.863 acRunoff Volume = 11.890 afAverage Runoff Depth = 2.98"96.47% Pervious = 46.175 ac3.53% Impervious = 1.688 ac


Pre 10-18-17	Type III 24-hr 25-Year Storm Rainfall=5.80"
Prepared by Gorrill Palmer	Printed 10/27/2017
HydroCAD® 8.50 s/n 001265 © 2007 HydroCAD Software Set	olutions LLC Page 3

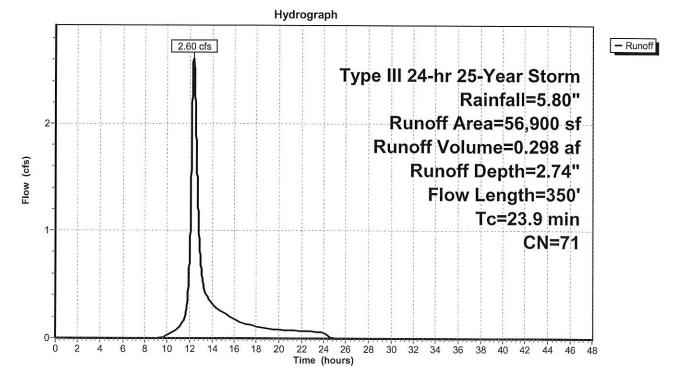
Summary for Subcatchment 1S:

Runoff = 10.80 cfs @ 12.38 hrs, Volume= 1.295 af, Depth= 3.21"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.80"

A	rea (sf)	CN	Description				
	7,600	600 71 Meadow, non-grazed, HSG C					
	77,200	78	Meadow, no	on-grazed,	HSG D		
	29,900	70	Woods, Go	od, HSG C			
	96,300	77 \	Woods, Go	od, HSG D			
2	11,000	76	Weighted A	verage			
2	11,000		Pervious Ar	rea			
Тс	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	2		
22.9	150	0.0400	0.11		Sheet Flow, A-B		
					Woods: Light underbrush n= 0.400 P2= 3.10"		
1.0	240	0.0700	3.97		Shallow Concentrated Flow, B-C		
					Grassed Waterway Kv= 15.0 fps		
3.2	300	0.1000	1.58		Shallow Concentrated Flow, C-D		
					Woodland Kv= 5.0 fps		
27.1	690	Total					

Subcatchment 1S:


Summary for Subcatchment 2S:

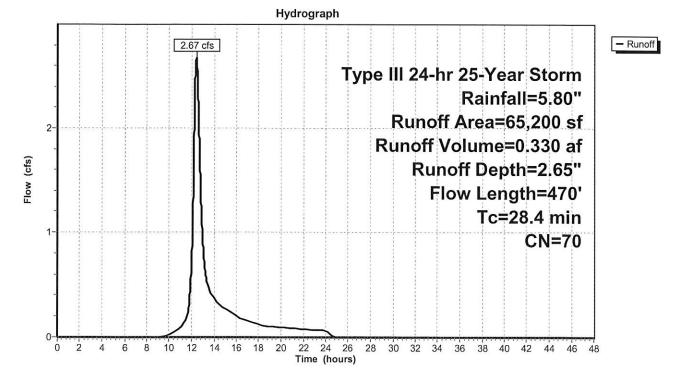
Runoff = 2.60 cfs @ 12.35 hrs, Volume= 0.298 af, Depth= 2.74"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.80"

8	A	rea (sf)	CN	Description		
		44,800 70 Woods, Good, HSG C			od, HSG C	
<i>n</i>		12,100	77 \	Woods, Go	od, HSG D	
56,900 71 Weighted Average				Weighted A	verage	
		56,900		Pervious Ar	ea	
	Тс	Length	Slope		Capacity	Description
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	21.4	150	0.0470	0.12		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.10"
	2.5	200	0.0700	1.32		Shallow Concentrated Flow, B-C
_						Woodland Kv= 5.0 fps
	23.9	350	Total			

Subcatchment 2S:

Summary for Subcatchment 3S:


Runoff = 2.67 cfs @ 12.40 hrs, Volume= 0.330 af, Depth= 2.65"

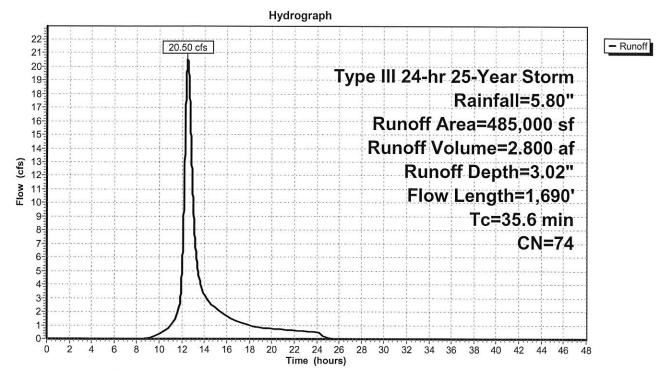
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.80"

	A	rea (sf)	CN [Description		
		65,200	70 \	Noods, Go	od, HSG C	
	65,200 Pervious Area			Pervious Ar	ea	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	23.9	150	0.0360	0.10		Sheet Flow, A-B
1.200	4.5	320	0.0550	1.17		Woods: Light underbrush n= 0.400 P2= 3.10" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
1.0	28.4	470	Total			

.4 470 Total

Subcatchment 3S:

Pre 10-18-17	Type III 24-hr 25-Year Storm Rainfall=5.80"
Prepared by Gorrill Palmer	Printed 10/27/2017
HydroCAD® 8.50 s/n 001265 © 2007 HydroCAD Software Sc	olutions LLC Page 6

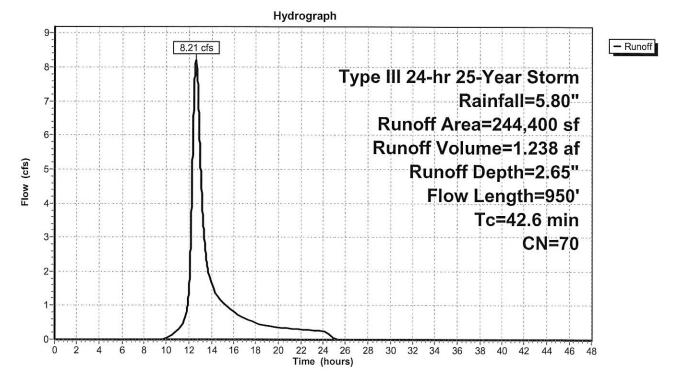

Summary for Subcatchment 4S:

Runoff = 20.50 cfs @ 12.50 hrs, Volume= 2.800 af, Depth= 3.02"

A	rea (sf)	CN [Description		
1	18,700	77 2	acre lots,	12% imp, I	HSG C
	55,800			12% imp, I	
	45,000			on-grazed,	
	51,600			on-grazed,	
2	11,900			od, HSG C	
	2,000	77 V	Voods, Go	od, HSG D	
	85,000		Veighted A	•	
	64,060		Pervious Ar		
	20,940	l	mpervious	Area	
Тс	Lenath	Slone	Velocity	Canacity	Description
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	Length (feet) 150	Slope (ft/ft) 0.0300	Velocity (ft/sec) 0.15	Capacity (cfs)	Description Sheet Flow, A-B
(min)	(feet)	(ft/ft)	(ft/sec)		
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, A-B
(min) 17.1 3.7	(feet) 150	(ft/ft) 0.0300	(ft/sec) 0.15		Sheet Flow, A-B Grass: Dense n= 0.240 P2= 3.10"
<u>(min)</u> 17.1	(feet) 150	(ft/ft) 0.0300	(ft/sec) 0.15		Sheet Flow, A-B Grass: Dense n= 0.240 P2= 3.10" Shallow Concentrated Flow, B-C
(min) 17.1 3.7	(feet) 150 630	(ft/ft) 0.0300 0.0360	(ft/sec) 0.15 2.85		Sheet Flow, A-B Grass: Dense n= 0.240 P2= 3.10" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps

Pre 10-18-17	Type III 24-hr 25-Year Storm Rainfall=5.80"
Prepared by Gorrill Palmer	Printed 10/27/2017
HydroCAD® 8.50 s/n 001265 © 2007 HydroCAD Software So	lutions LLC Page 7

Subcatchment 4S:


Summary for Subcatchment 5S:

Runoff = 8.21 cfs @ 12.60 hrs, Volume= 1.238 af, Depth= 2.65"

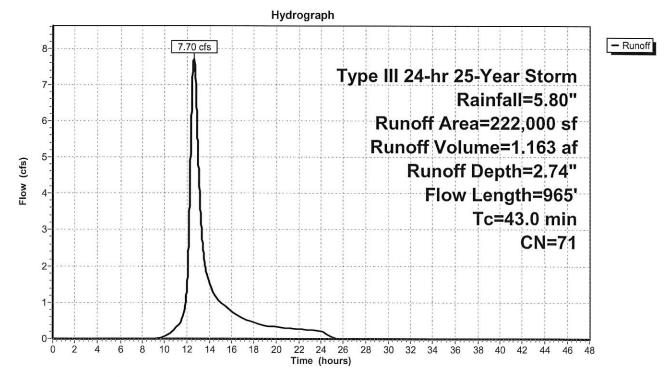
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.80"

	A	rea (sf)	CN E	Description		
	2	44,400	70 V	Voods, Go	od, HSG C	
150	244,400 Pervious Area		ea			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	29.6	150	0.0210	0.08		Sheet Flow, A-B
	13.0	800	0.0420	1.02		Woods: Light underbrush n= 0.400 P2= 3.10" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	42.6	950	Total			

Subcatchment 5S:

Pre 10-18-17	Type III 24-hr 25-Year Storm Rainfall=5.80"
Prepared by Gorrill Palmer	Printed 10/27/2017
HydroCAD® 8.50 s/n 001265 © 2007 HydroCAD Software S	olutions LLC Page 9

Summary for Subcatchment 6S:

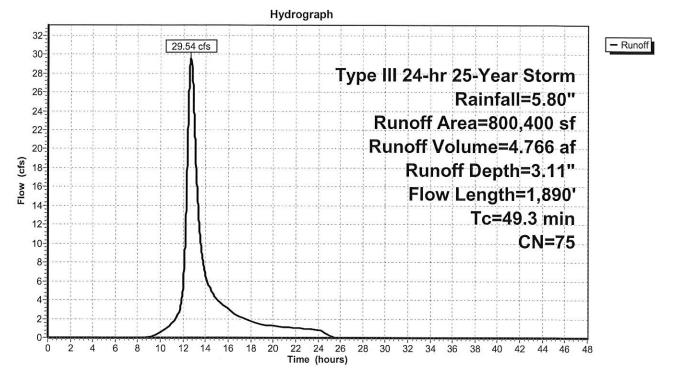

Runoff = 7.70 cfs @ 12.61 hrs, Volume= 1.163 af, Depth= 2.74"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.80"

	A	ea (sf)	CN I	Description		
107	1	85,600	70 \	Woods, Go	od, HSG C	
	0	36,400	77 \	Woods, Go	od, HSG D	
222,000 71 Weighted Average			Weighted A	verage		
	222,000 Pervious Area				ea	
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	26.8	150	0.0270	0.09		Sheet Flow, A-B
_	16.2	815	0.0280	0.84		Woods: Light underbrush n= 0.400 P2= 3.10" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	13 0	065	Total			

43.0 965 Total

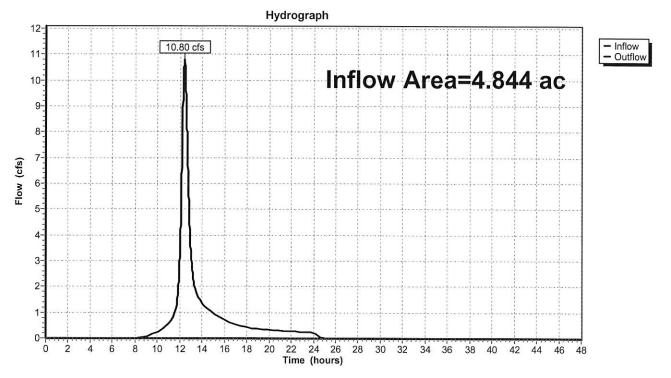
Subcatchment 6S:



Summary for Subcatchment 7S:

Runoff = 29.54 cfs @ 12.66 hrs, Volume= 4.766 af, Depth= 3.11"

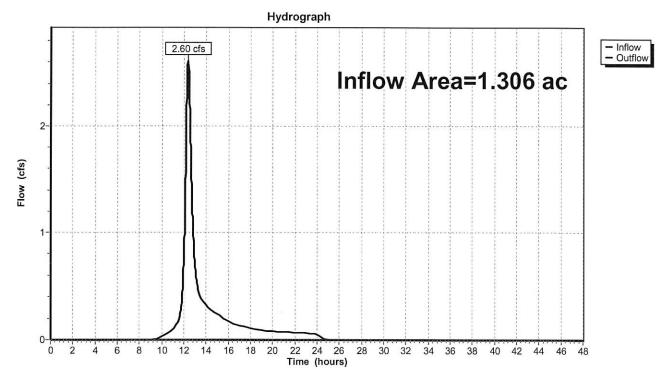
	A	rea (sf)	CN [Description		
		2,712	98 F	Paved park	ing & roofs	
	2	18,288			12% imp, H	
		97,200			12% imp, H	
		76,700			on-grazed,	
		84,400			od, HSG C	
		21,100			od, HSG D	
		00,400		Veighted A	•	
		47,829		Pervious Ar		
		52,571	1	mpervious	Area	
	Тс	Length	Slope	Velocity	Capacity	Description
((min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
	18.3	150	0.0250	0.14	·····	Sheet Flow, A-B
						Grass: Dense n= 0.240 P2= 3.10"
	2.8	390	0.0240	2.32		Shallow Concentrated Flow, B-C
						Grassed Waterway Kv= 15.0 fps
	10.0	390	0.0170	0.65		Shallow Concentrated Flow, C-D
			0.0400			Woodland Kv= 5.0 fps
	0.1	20	0.0100	6.22	7.63	Circular Channel (pipe), D-E
	10 1	040	0 0200	0 07		Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.011
	18.1	940	0.0300	0.87		Shallow Concentrated Flow, E-F Woodland Kv= 5.0 fps
-	49.3	1 900	Total			
	49.3	1,890	Total			



Summary for Reach 7R: POI 1

Inflow Are	a =	4.844 ac,	0.00% Impervious,	Inflow Depth =	3.21"	for 25-Year Storm event
Inflow	=	10.80 cfs @	12.38 hrs, Volume=	= 1.295 a	af	
Outflow	=	10.80 cfs @	12.38 hrs, Volume	= 1.295 a	af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3

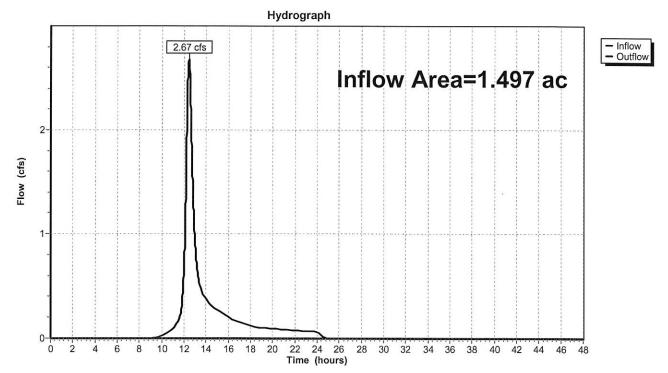


Reach 7R: POI 1

Summary for Reach 8R: POI 2

Inflow Are	a =	1.306 ac,	0.00% Impervious, I	nflow Depth = 2.74'	for 25-Year Storm event
Inflow	=	2.60 cfs @	12.35 hrs, Volume=	0.298 af	
Outflow	=	2.60 cfs @	12.35 hrs, Volume=	0.298 af, A	tten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3

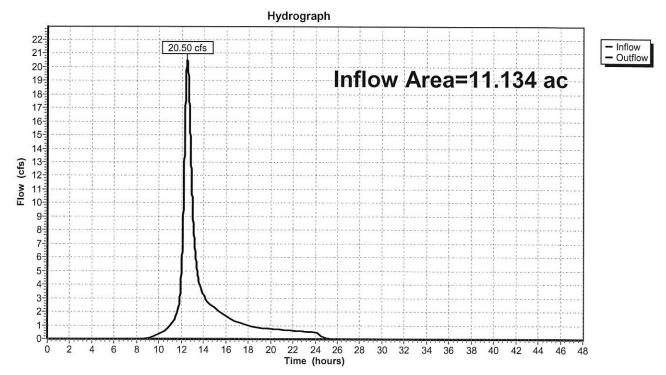


Reach 8R: POI 2

Summary for Reach 9R: POI 3

Inflow Are	a =	1.497 ac,	0.00% Impervious, Inflow	Depth = 2.65"	for 25-Year Storm event
Inflow	=	2.67 cfs @	12.40 hrs, Volume=	0.330 af	
Outflow	=	2.67 cfs @	12.40 hrs, Volume=	0.330 af, Att	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3

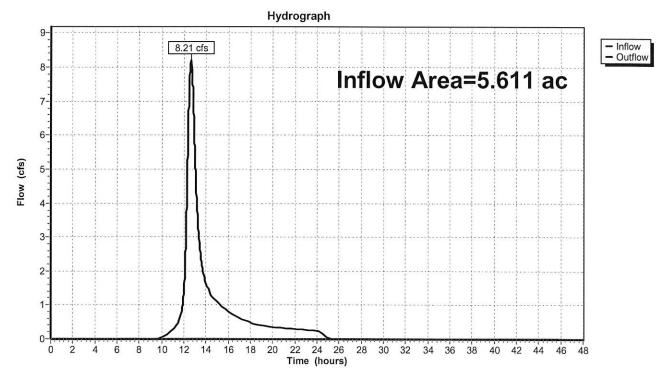


Reach 9R: POI 3

Summary for Reach 10R: POI 4

Inflow Are	a =	11.134 ac,	4.32% Impervious, Inflow I	Depth = 3.02"	for 25-Year Storm event
Inflow	=	20.50 cfs @	12.50 hrs, Volume=	2.800 af	
Outflow	=	20.50 cfs @	12.50 hrs, Volume=	2.800 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3

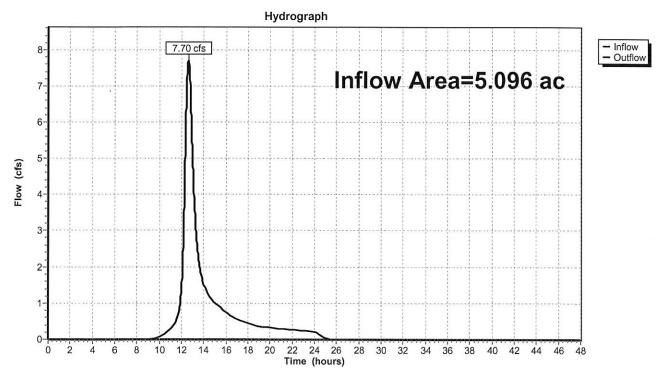


Reach 10R: POI 4

Summary for Reach 11R: POI 5

Inflow Are	a =	5.611 ac,	0.00% Impervious,	Inflow Depth =	2.65"	for 25-Year Storm event
Inflow	=	8.21 cfs @	12.60 hrs, Volume	= 1.238	af	
Outflow	=	8.21 cfs @	12.60 hrs, Volume	= 1.238	af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3

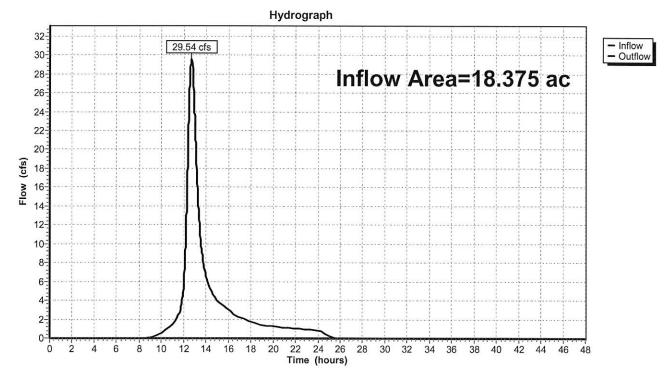


Reach 11R: POI 5

Summary for Reach 12R: POI 6

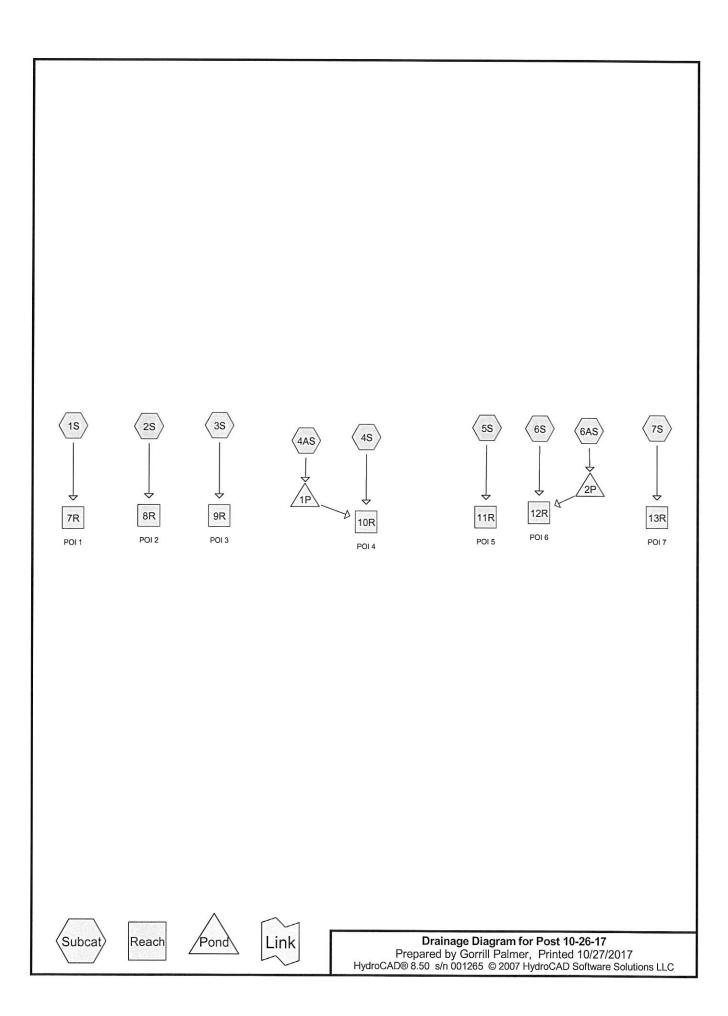
Inflow Are	a =	5.096 ac,	0.00% Impervious,	Inflow Depth =	2.74"	for 25-Year Storm event
Inflow	=	7.70 cfs @	12.61 hrs, Volume	= 1.163	af	
Outflow	=	7.70 cfs @	12.61 hrs, Volume	= 1.163	af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3



Reach 12R: POI 6

Summary for Reach 13R: POI 7


Inflow Are	ea =	18.375 ac,	6.57% Impervious, Ir	nflow Depth = 3.11"	for 25-Year Storm event
Inflow	=	29.54 cfs @	12.66 hrs, Volume=	4.766 af	
Outflow	=	29.54 cfs @	12.66 hrs, Volume=	4.766 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3

Reach 13R: POI 7

×

Post 10-26-17Type III 24-hr 2-YePrepared by Gorrill PalmerHydroCAD® 8.50s/n 001265© 2007 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Storm Rainfall=3.10" Printed 10/27/2017 ions LLC Page 1

Runof	00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 f by SCS TR-20 method, UH=SCS or-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 1S:	Runoff Area=189,100 sf 3.29% Impervious Runoff Depth=1.20" Flow Length=690' Tc=27.1 min CN=78 Runoff=3.52 cfs 0.434 af
Subcatchment 2S:	Runoff Area=39,800 sf 4.46% Impervious Runoff Depth=0.92" Flow Length=200' Tc=22.0 min CN=73 Runoff=0.59 cfs 0.070 af
Subcatchment 3S:	Runoff Area=55,900 sf 5.37% Impervious Runoff Depth=0.87" Flow Length=300' Tc=26.0 min CN=72 Runoff=0.72 cfs 0.093 af
Subcatchment 4AS:	Runoff Area=115,632 sf 17.76% Impervious Runoff Depth=1.08" Flow Length=785' Tc=15.3 min CN=76 Runoff=2.42 cfs 0.240 af
Subcatchment 4S:	Runoff Area=424,528 sf 5.50% Impervious Runoff Depth=1.03" Flow Length=1,690' Tc=35.6 min CN=75 Runoff=5.82 cfs 0.834 af
Subcatchment 5S:	Runoff Area=158,400 sf 1.89% Impervious Runoff Depth=0.82" Flow Length=600' Tc=30.2 min CN=71 Runoff=1.77 cfs 0.248 af
Subcatchment 6AS:	Runoff Area=208,960 sf 13.69% Impervious Runoff Depth=1.08" Flow Length=760' Tc=34.1 min CN=76 Runoff=3.11 cfs 0.433 af
Subcatchment 6S:	Runoff Area=100,550 sf 2.98% Impervious Runoff Depth=0.87" Flow Length=390' Tc=27.3 min CN=72 Runoff=1.26 cfs 0.167 af
Subcatchment 7S:	Runoff Area=792,062 sf 7.10% Impervious Runoff Depth=1.03" Flow Length=1,890' Tc=49.3 min CN=75 Runoff=9.12 cfs 1.556 af
Reach 7R: POI 1	Inflow=3.52 cfs 0.434 af Outflow=3.52 cfs 0.434 af
Reach 8R: POI 2	Inflow=0.59 cfs 0.070 af Outflow=0.59 cfs 0.070 af
Reach 9R: POI 3	Inflow=0.72 cfs 0.093 af Outflow=0.72 cfs 0.093 af
Reach 10R: POI 4	Inflow=6.22 cfs 1.049 af Outflow=6.22 cfs 1.049 af
Reach 11R: POI 5	Inflow=1.77 cfs 0.248 af Outflow=1.77 cfs 0.248 af
Reach 12R: POI 6	Inflow=1.29 cfs 0.541 af Outflow=1.29 cfs 0.541 af
Reach 13R: POI 7	Inflow=9.12 cfs 1.556 af Outflow=9.12 cfs 1.556 af

Post 10-26-17 Prepared by Gorrill Pa HydroCAD® 8.50 s/n 001	Imer 265 © 2007 HydroCAD Software		ar Storm Rainfall=3.10" Printed 10/27/2017 Page 2
Pond 1P:	Peak Elev Primary=0.48 cfs 0.154 af Sec	v=397.68' Storage=4,251 c condary=0.02 cfs 0.062 af	
Pond 2P:	Peak Elev Primary=0.82 cfs 0.282 af Sec	v=406.57' Storage=7,919 c condary=0.03 cfs 0.092 af	

Total Runoff Area = 47.863 acRunoff Volume = 4.074 afAverage Runoff Depth = 1.02"93.01% Pervious = 44.518 ac6.99% Impervious = 3.346 ac

Post 10-26-17Type III 24-hr 10-YeaPrepared by Gorrill PalmerHydroCAD® 8.50s/n 001265© 2007 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Storm Rainfall=4.60" Printed 10/27/2017 utions LLC Page 3

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S:	Runoff Area=189,100 sf 3.29% Impervious Runoff Depth=2.38" Flow Length=690' Tc=27.1 min CN=78 Runoff=7.15 cfs 0.859 af
Subcatchment 2S:	Runoff Area=39,800 sf 4.46% Impervious Runoff Depth=1.97" Flow Length=200' Tc=22.0 min CN=73 Runoff=1.34 cfs 0.150 af
Subcatchment 3S:	Runoff Area=55,900 sf 5.37% Impervious Runoff Depth=1.89" Flow Length=300' Tc=26.0 min CN=72 Runoff=1.68 cfs 0.203 af
Subcatchment 4AS:	Runoff Area=115,632 sf 17.76% Impervious Runoff Depth=2.21" Flow Length=785' Tc=15.3 min CN=76 Runoff=5.13 cfs 0.489 af
Subcatchment 4S:	Runoff Area=424,528 sf 5.50% Impervious Runoff Depth=2.13" Flow Length=1,690' Tc=35.6 min CN=75 Runoff=12.57 cfs 1.729 af
Subcatchment 5S:	Runoff Area=158,400 sf 1.89% Impervious Runoff Depth=1.82" Flow Length=600' Tc=30.2 min CN=71 Runoff=4.27 cfs 0.551 af
Subcatchment 6AS:	Runoff Area=208,960 sf 13.69% Impervious Runoff Depth=2.21" Flow Length=760' Tc=34.1 min CN=76 Runoff=6.59 cfs 0.883 af
Subcatchment 6S:	Runoff Area=100,550 sf 2.98% Impervious Runoff Depth=1.89" Flow Length=390' Tc=27.3 min CN=72 Runoff=2.96 cfs 0.364 af
Subcatchment 7S:	Runoff Area=792,062 sf 7.10% Impervious Runoff Depth=2.13" Flow Length=1,890' Tc=49.3 min CN=75 Runoff=19.79 cfs 3.226 af
Reach 7R: POI 1	Inflow=7.15 cfs 0.859 af Outflow=7.15 cfs 0.859 af
Reach 8R: POI 2	Inflow=1.34 cfs 0.150 af Outflow=1.34 cfs 0.150 af
Reach 9R: POI 3	Inflow=1.68 cfs 0.203 af Outflow=1.68 cfs 0.203 af
Reach 10R: POI 4	Inflow=13.81 cfs 2.193 af Outflow=13.81 cfs 2.193 af
Reach 11R: POI 5	Inflow=4.27 cfs 0.551 af Outflow=4.27 cfs 0.551 af
Reach 12R: POI 6	Inflow=4.55 cfs 1.187 af Outflow=4.55 cfs 1.187 af
Reach 13R: POI 7	Inflow=19.79 cfs 3.226 af Outflow=19.79 cfs 3.226 af

Post 10-26-17 Prepared by Gorrill Palmer	Type III 24-hr 10-Year Storm Rainfall=4.60" Printed 10/27/2017
HydroCAD® 8.50 s/n 001265 © 2007 HydroCAD S	
Pond 1P: F	Peak Elev=398.46' Storage=8,587 cf Inflow=5.13 cfs 0.489 af

Peak Elev=398.46' Storage=8,587 cf Inflow=5.13 cfs 0.489 af Primary=1.29 cfs 0.400 af Secondary=0.02 cfs 0.064 af Outflow=1.31 cfs 0.464 af

Pond 2P:

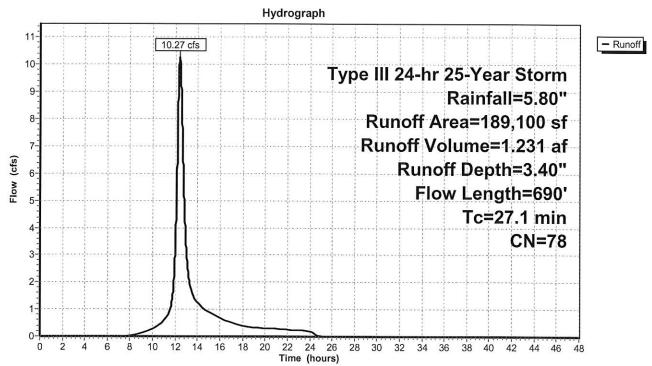
Peak Elev=407.42' Storage=13,593 cf Inflow=6.59 cfs 0.883 af Primary=3.07 cfs 0.727 af Secondary=0.03 cfs 0.096 af Outflow=3.10 cfs 0.823 af

Total Runoff Area = 47.863 acRunoff Volume = 8.455 afAverage Runoff Depth = 2.12"93.01% Pervious = 44.518 ac6.99% Impervious = 3.346 ac

Post 10-26-17	Type III 24-hr 25-Year Storm Rainfall=5.80"
Prepared by Gorrill Palmer	Printed 10/27/2017
HydroCAD® 8.50 s/n 001265 © 2007 HydroCAD Software S	Solutions LLC Page 2

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S:	Runoff Area=189,100 sf 3.29% Impervious Runoff Depth=3.40" Flow Length=690' Tc=27.1 min CN=78 Runoff=10.27 cfs 1.231 af
Subcatchment 2S:	Runoff Area=39,800 sf 4.46% Impervious Runoff Depth=2.92" Flow Length=200' Tc=22.0 min CN=73 Runoff=2.02 cfs 0.223 af
Subcatchment 3S:	Runoff Area=55,900 sf 5.37% Impervious Runoff Depth=2.83" Flow Length=300' Tc=26.0 min CN=72 Runoff=2.55 cfs 0.303 af
Subcatchment 4AS:	Runoff Area=115,632 sf 17.76% Impervious Runoff Depth=3.21" Flow Length=785' Tc=15.3 min CN=76 Runoff=7.49 cfs 0.710 af
Subcatchment 4S:	Runoff Area=424,528 sf 5.50% Impervious Runoff Depth=3.11" Flow Length=1,690' Tc=35.6 min CN=75 Runoff=18.52 cfs 2.528 af
Subcatchment 5S:	Runoff Area=158,400 sf 1.89% Impervious Runoff Depth=2.74" Flow Length=600' Tc=30.2 min CN=71 Runoff=6.53 cfs 0.830 af
Subcatchment 6AS:	Runoff Area=208,960 sf 13.69% Impervious Runoff Depth=3.21" Flow Length=760' Tc=34.1 min CN=76 Runoff=9.63 cfs 1.282 af
Subcatchment 6S:	Runoff Area=100,550 sf 2.98% Impervious Runoff Depth=2.83" Flow Length=390' Tc=27.3 min CN=72 Runoff=4.49 cfs 0.544 af
Subcatchment 7S:	Runoff Area=792,062 sf 7.10% Impervious Runoff Depth=3.11" Flow Length=1,890' Tc=49.3 min CN=75 Runoff=29.24 cfs 4.716 af
Reach 7R: POI 1	Inflow=10.27 cfs 1.231 af Outflow=10.27 cfs 1.231 af
Reach 8R: POI 2	Inflow=2.02 cfs 0.223 af Outflow=2.02 cfs 0.223 af
Reach 9R: POI 3	Inflow=2.55 cfs 0.303 af Outflow=2.55 cfs 0.303 af
Reach 10R: POI 4	Inflow=20.18 cfs 3.212 af Outflow=20.18 cfs 3.212 af
Reach 11R: POI 5	Inflow=6.53 cfs 0.830 af Outflow=6.53 cfs 0.830 af
Reach 12R: POI 6	Inflow=7.65 cfs 1.765 af Outflow=7.65 cfs 1.765 af


Post 10-26-17 Prepared by Gorrill Pal HydroCAD® 8.50 s/n 0012	Type III 24-hr 25-Year Storm Rainfall=5.3 Printed 10/27/20 55 © 2007 HydroCAD Software Solutions LLC Pag	017
Pond 1P:	Peak Elev=399.13' Storage=13,048 cf Inflow=7.49 cfs 0.710 Primary=1.71 cfs 0.619 af Secondary=0.02 cfs 0.066 af Outflow=1.73 cfs 0.684	
Pond 2P:	Peak Elev=408.00' Storage=18,613 cf Inflow=9.63 cfs 1.282 Primary=5.04 cfs 1.123 af Secondary=0.03 cfs 0.098 af Outflow=5.07 cfs 1.221	

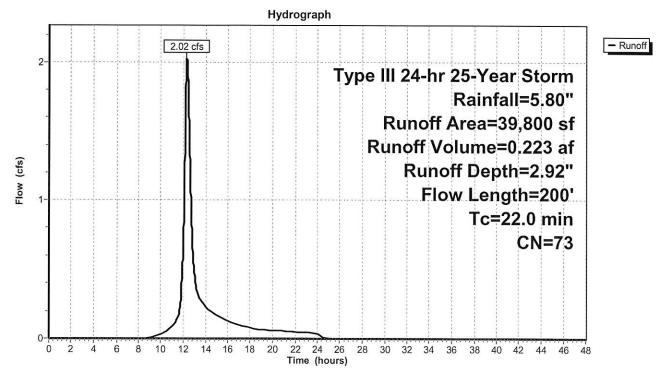
Total Runoff Area = 47.863 acRunoff Volume = 12.367 af
93.01% Pervious = 44.518 acAverage Runoff Depth = 3.10"
6.99% Impervious = 3.346 ac

Summary for Subcatchment 1S:

Runoff = 10.27 cfs @ 12.38 hrs, Volume= 1.231 af, Depth= 3.40"

A	rea (sf)	CN [Description		
	6,212	98 F	Paved park	ing & roofs	
	18,000	80 >75% Grass cover, Go			ood, HSG D
	7,600	71 N	Meadow, no	on-grazed,	HSG C
	77,200			on-grazed,	
	6,000			od, HSG C	
	74,088	77 \	Voods, Go	od, HSG D	
1	89,100	78 \	Veighted A	verage	
1	82,888		Pervious Ar		
	6,212		Impervious Area		
-	1	0		o	5
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)	
		And the second second second			Sheet Flow, A-B
<u>(min)</u> 22.9	(feet) 150	(ft/ft) 0.0400	(ft/sec) 0.11		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.10"
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.10" Shallow Concentrated Flow, B-C
<u>(min)</u> 22.9 1.0	(feet) 150 240	(ft/ft) 0.0400 0.0700	(ft/sec) 0.11 3.97		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.10" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps
<u>(min)</u> 22.9	(feet) 150	(ft/ft) 0.0400	(ft/sec) 0.11		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.10" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps Shallow Concentrated Flow, C-D
<u>(min)</u> 22.9 1.0	(feet) 150 240	(ft/ft) 0.0400 0.0700	(ft/sec) 0.11 3.97		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.10" Shallow Concentrated Flow, B-C Grassed Waterway Kv= 15.0 fps

Subcatchment 1S:

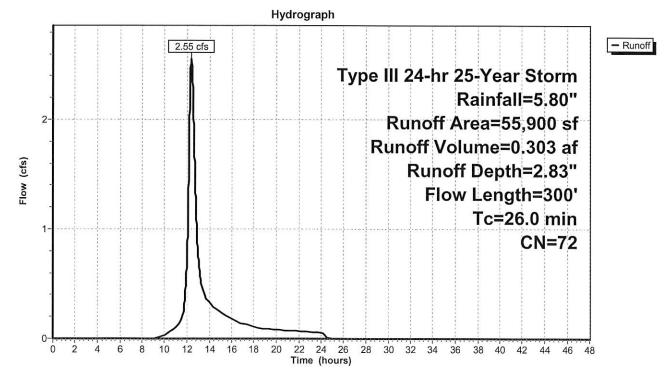

Summary for Subcatchment 2S:

Runoff = 2.02 cfs @ 12.30 hrs, Volume= 0.223 af, Depth= 2.92"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.80"

A	rea (sf)	CN E	Description		
	1,776	98 F	aved park	ing & roofs	
	5,000	80 >	75% Gras	s cover, Go	ood, HSG D
	28,400	70 V	Voods, Go	od, HSG C	
	4,624	77 V	Voods, Go	od, HSG D	
	39,800	73 V	Veighted A	verage	
	38,024	F	Pervious Ar	rea	
	1,776	h	npervious	Area	
T -	longth	Class	Volocity	Capacity	Description
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	Slope (ft/ft)	(ft/sec)	(cfs)	Description
	•				Sheet Flow, A-B
(min)	(feet)	(ft/ft)	(ft/sec)		
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, A-B
<u>(min)</u> 21.4	(feet) 150	(ft/ft) 0.0470	(ft/sec) 0.12		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.10"

Subcatchment 2S:

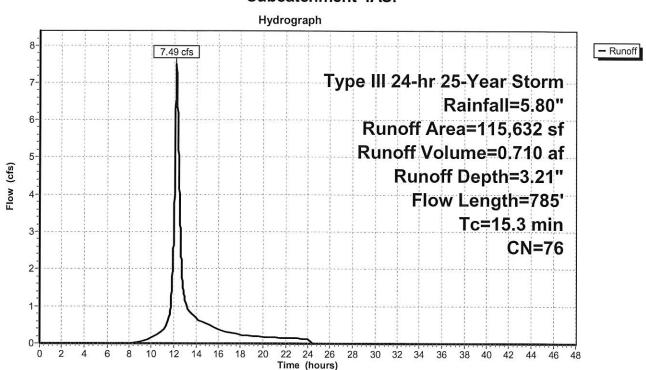

Summary for Subcatchment 3S:

Runoff = 2.55 cfs @ 12.37 hrs, Volume= 0.303 af, Depth= 2.83"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.80"

A	rea (sf)	CN E	Description						
	3,000	98 F	98 Paved parking & roofs						
	12,000	74 >	75% Gras	s cover, Go	bod, HSG C				
	40,900	70 V	Voods, Go	od, HSG C					
	55,900	72 V	Veighted A	verage					
	52,900	F	Pervious Ar	ea					
	3,000 Impervious Area								
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	5				
23.9	150	0.0360	0.10		Sheet Flow, A-B				
					Woods: Light underbrush n= 0.400 P2= 3.10"				
2.1	150	0.0550	1.17		Shallow Concentrated Flow, B-C				
					Woodland Kv= 5.0 fps				
26.0	300	Total							

Subcatchment 3S:

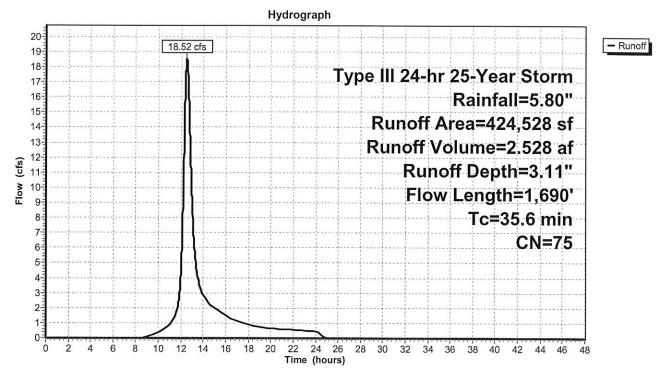

Summary for Subcatchment 4AS:

Runoff = 7.49 cfs @ 12.21 hrs, Volume= 0.710 af, Depth= 3.21"

	Are	ea (sf)	CN E	Description		
	20,542 98 Paved parking & roofs			aved park	ing & roofs	
	4	2,904	74 >	75% Gras	s cover, Go	bod, HSG C
	5	2,186	70 V	Voods, Go	od, HSG C	
	11	5,632	76 V	Veighted A	verage	
	9	5,090	F	Pervious Ar	ea	
	2	0,542	h	mpervious	Area	
		51	1211			
		Length	Slope	Velocity	Capacity	Description
(mir	ו)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13.	3	100	0.0250	0.13		Sheet Flow, A-B
						Grass: Dense n= 0.240 P2= 3.10"
0.	0	20	0.3300	8.62		Shallow Concentrated Flow, B-C
-						Grassed Waterway Kv= 15.0 fps
0.	3	65	0.0100	4.32	60.45	Trap/Vee/Rect Channel Flow, C-D
	2					Bot.W=1.00' D=2.00' Z= 3.0 '/' Top.W=13.00' n= 0.035
1.	2	380	0.0100	5.26	6.46	Circular Channel (pipe), D-E
•	_					Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013
0.	5	220	0.0570	6.77	27.09	Trap/Vee/Rect Channel Flow, E-F
						Bot.W=1.00' D=1.00' Z= 3.0 '/' Top.W=7.00' n= 0.035
15.	3	785	Total			

Post 10-26-17

Prepared by Gorrill Palmer HydroCAD® 8.50 s/n 001265 © 2007 HydroCAD Software Solutions LLC

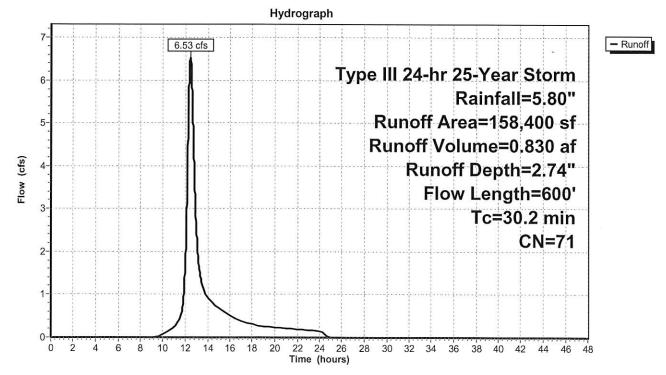

Subcatchment 4AS:

Summary for Subcatchment 4S:

Runoff = 18.52 cfs @ 12.50 hrs, Volume= 2.528 af, Depth= 3.11"

	A	rea (sf)	CN [CN Description							
		2,394	98 F	98 Paved parking & roofs							
		10,672	74 >	75% Gras	s cover, Go	bod, HSG C					
	1	18,700	77 2	acre lots,	12% imp, H	HSG C					
		55,800	82 2	acre lots,	12% imp, H	HSG D					
		45,000	71 N	Aeadow, no	on-grazed,	HSG C					
		51,600			on-grazed,						
	1	38,362			od, HSG C						
-		2,000	77 V	Voods, Go	od, HSG D						
		24,528	75 V	Veighted A	verage						
		01,194		Pervious Ar							
		23,334	l	mpervious	Area						
	Te	Lanath	01	Mala 24.	0						
	Tc	Length	Slope	Velocity	Capacity	Description					
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	17.1	150	0.0300	0.15		Sheet Flow, A-B					
	27	620	0.0000 0.05			Grass: Dense n= 0.240 P2= 3.10"					
	3.7	630	0.0360 2.85			Shallow Concentrated Flow, B-C					
	14.8	910	0.0420	1.02		Grassed Waterway Kv= 15.0 fps					
	14.0	910	0.0420	1.02		Shallow Concentrated Flow, C-D Woodland Kv= 5.0 fps					
_	25.6	1 600	Tatal								
	35.6	1,690	Total								

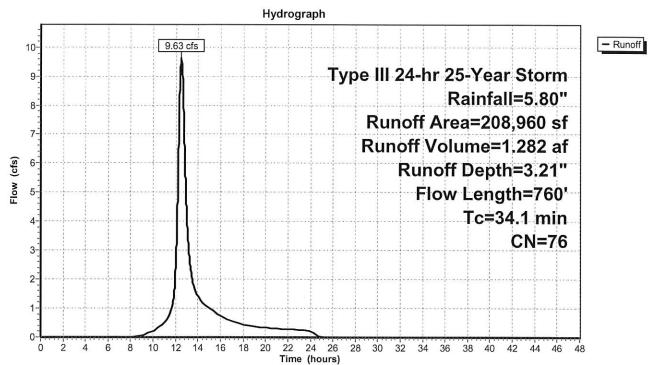
Subcatchment 4S:


Summary for Subcatchment 5S:

Runoff = 6.53 cfs @ 12.44 hrs, Volume= 0.830 af, Depth= 2.74"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.80"

A	rea (sf)	CN E	Description						
	3,000	98 F	98 Paved parking & roofs						
	12,000	74 >	75% Gras	s cover, Go	bod, HSG C				
1	43,400	70 V	Voods, Go	od, HSG C					
1	58,400	71 V	Veighted A	verage					
1	55,400	F	Pervious Ar	ea					
	3,000	li	mpervious	Area					
				41					
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
22.9	150	0.0400	0.11		Sheet Flow, A-B				
					Woods: Light underbrush n= 0.400 P2= 3.10"				
7.3	450	0.0420	1.02		Shallow Concentrated Flow, B-C				
					Woodland Kv= 5.0 fps				
30.2	600	Total							

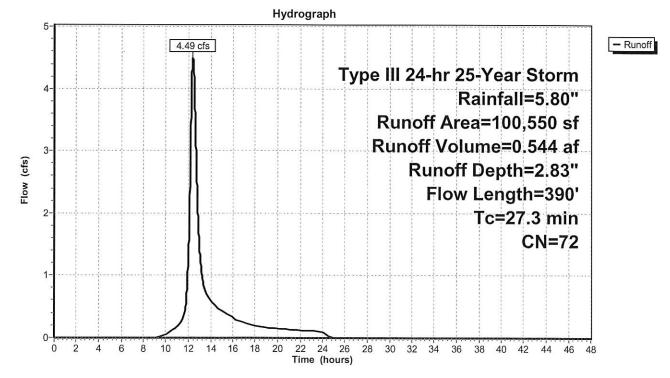

Subcatchment 5S:

Summary for Subcatchment 6AS:

Runoff = 9.63 cfs @ 12.47 hrs, Volume= 1.282 af, Depth= 3.21"

Α	rea (sf)	CN E	Description				
	28,610	98 F	98 Paved parking & roofs				
	70,092	74 >	75% Gras	s cover, Go	ood, HSG C		
	82,558			od, HSG C			
-	27,700	77 V	Voods, Go	od, HSG D			
2	08,960	76 V	Veighted A	verage			
1	80,350	F	Pervious Ar	ea			
	28,610	I	npervious	Area			
		189-1-2003					
Тс	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
29.6	150	0.0210	0.08		Sheet Flow, A-B		
					Woods: Light underbrush n= 0.400 P2= 3.10"		
2.8	140	0.0270	0.82		Shallow Concentrated Flow, B-C		
				Woodland Kv= 5.0 fps			
1.3	330	0.0100	4.32	60.45	Trap/Vee/Rect Channel Flow, C-D		
	4.40	0.0400	5.00	0.40	Bot.W=1.00' D=2.00' Z= 3.0 '/' Top.W=13.00' n= 0.035		
0.4	140	0.0100	5.26	6.46	Circular Channel (pipe), D-E		
					Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013		
34.1	760	Total					

Subcatchment 6AS:

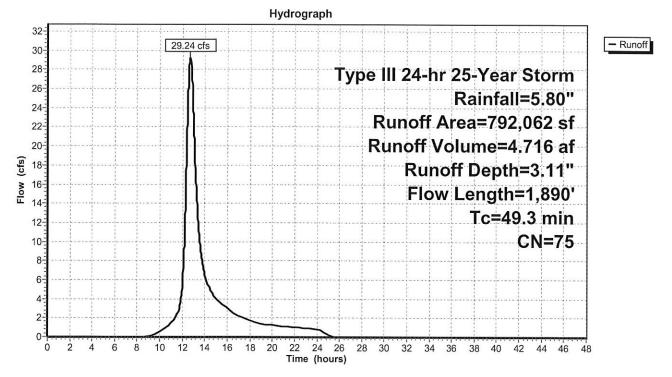

Summary for Subcatchment 6S:

Runoff = 4.49 cfs @ 12.40 hrs, Volume= 0.544 af, Depth= 2.83"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.80"

A	rea (sf)	CN E	Description						
	3,000	98 F	98 Paved parking & roofs						
	18,000	74 >	75% Gras	s cover, Go	ood, HSG C				
	79,550	70 V	Voods, Go	od, HSG C					
1	00,550	72 V	Veighted A	verage					
	97,550	F	Pervious Ar	rea					
	3,000	Ir	npervious	Area					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
22.9	150	0.0400	0.11		Sheet Flow, A-B				
					Woods: Light underbrush n= 0.400 P2= 3.10"				
4.4	240	0.0330	0.91		Shallow Concentrated Flow, B-C				
-					Woodland Kv= 5.0 fps				
27.3	390	Total							

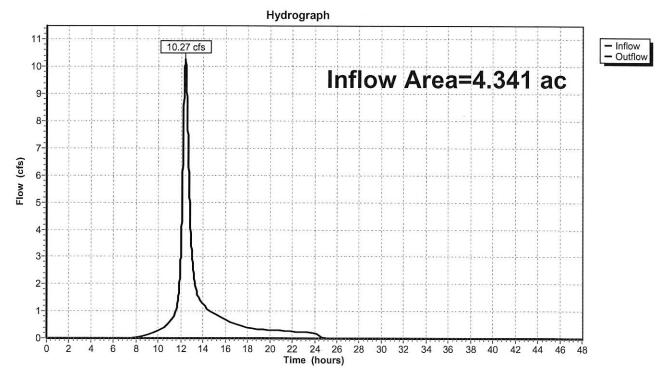
Subcatchment 6S:



Summary for Subcatchment 7S:

Runoff = 29.24 cfs @ 12.66 hrs, Volume= 4.716 af, Depth= 3.11"

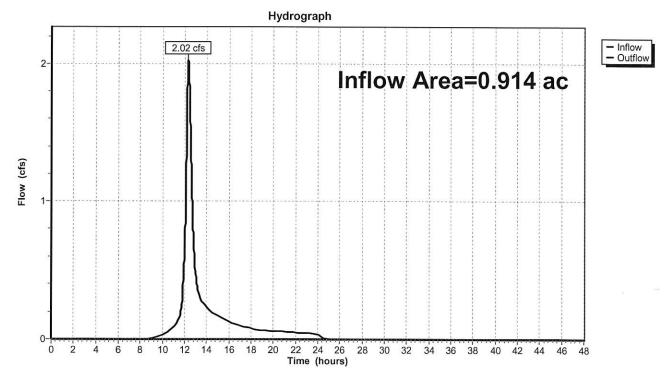
Α	rea (sf)	CN [Description			
	6,412	98 F	98 Paved parking & roofs			
	6,800	74 >	>75% Gras	s cover, Go	bod, HSG C	
	218,288			12% imp, H		
1	97,200			12% imp, H		
	76,700			on-grazed,		
	265,562			od, HSG C		
	21,100			od, HSG D		
	792,062		Veighted A	•		
	35,791		Pervious Ar			
	56,271		mpervious	Area		
То	Longth	Slope	Volocity	Consoitu	Description	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
18.3	150	0.0250		(013)	Shoot Flow A P	
10.5	150	0.0250	0.14		Sheet Flow, A-B Grass: Dense n= 0.240 P2= 3.10"	
2.8	390	0.0240	2.32		Shallow Concentrated Flow, B-C	
2.0	000	0.0240	2.02		Grassed Waterway Kv= 15.0 fps	
10.0	390	0.0170	0.65		Shallow Concentrated Flow, C-D	
		010110	0.00		Woodland Kv= 5.0 fps	
0.1	20	0.0100	6.22	7.63		
					Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.011	
18.1	940	0.0300	0.87		Shallow Concentrated Flow, E-F	
					Woodland Kv= 5.0 fps	
49.3	1,890	Total				



Summary for Reach 7R: POI 1

Inflow Are	a =	4.341 ac,	3.29% Impervious, Int	flow Depth = 3.40"	for 25-Year Storm event
Inflow	=	10.27 cfs @	12.38 hrs, Volume=	1.231 af	
Outflow	=	10.27 cfs @	12.38 hrs, Volume=	1.231 af, Att	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3

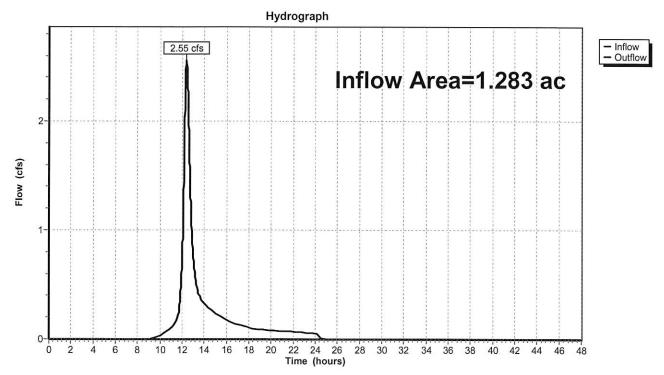


Reach 7R: POI 1

Summary for Reach 8R: POI 2

Inflow Are	a =	0.914 ac,	4.46% Impervious,	Inflow Depth =	2.92"	for 25-Year Storm event
Inflow	=	2.02 cfs @	12.30 hrs, Volume	= 0.223	af	
Outflow	=	2.02 cfs @	12.30 hrs, Volume	= 0.223	af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3

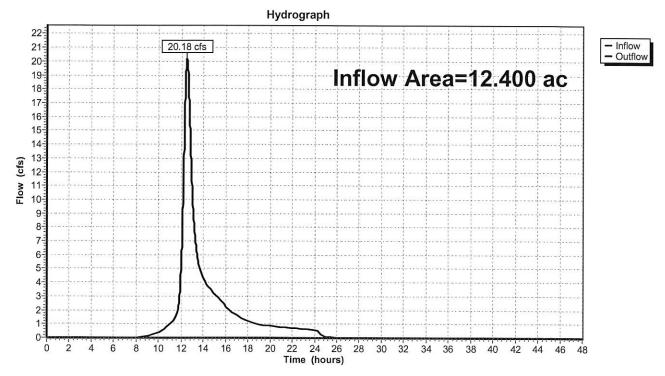


Reach 8R: POI 2

Summary for Reach 9R: POI 3

Inflow Are	a =	1.283 ac,	5.37% Impervious, Inflow	Depth = 2.83"	for 25-Year Storm event
Inflow	=	2.55 cfs @	12.37 hrs, Volume=	0.303 af	
Outflow	=	2.55 cfs @	12.37 hrs, Volume=	0.303 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3

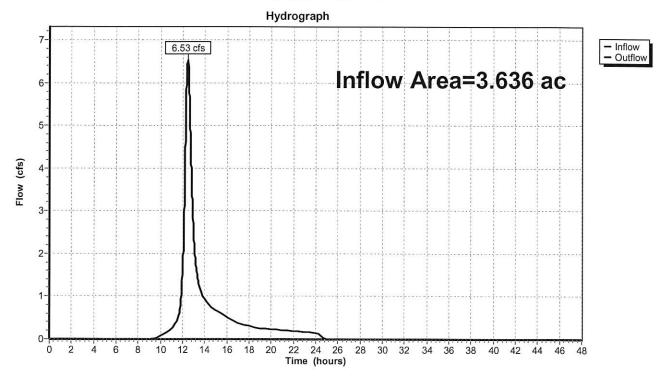


Reach 9R: POI 3

Summary for Reach 10R: POI 4

Inflow Are	a =	12.400 ac,	8.12% Impervious, Inflow	Depth > 3.11"	for 25-Year Storm event
Inflow	=	20.18 cfs @	12.50 hrs, Volume=	3.212 af	
Outflow	=	20.18 cfs @	12.50 hrs, Volume=	3.212 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3

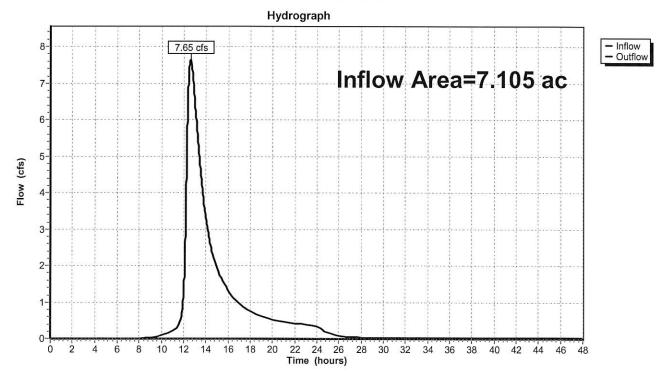


Reach 10R: POI 4

Summary for Reach 11R: POI 5

Inflow Are	a =	3.636 ac,	1.89% Impervious, Inflo	ow Depth = 2.74"	for 25-Year Storm event
Inflow	=	6.53 cfs @	12.44 hrs, Volume=	0.830 af	
Outflow	=	6.53 cfs @	12.44 hrs, Volume=	0.830 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3

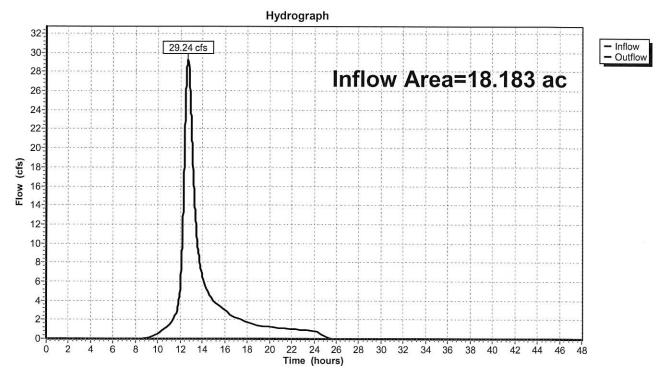


Reach 11R: POI 5

Summary for Reach 12R: POI 6

Inflow Are	a =	7.105 ac, 10.21% Impervious, Inflow Depth > 2.98" for 25-Year Storm event
Inflow	=	7.65 cfs @ 12.59 hrs, Volume= 1.765 af
Outflow	=	7.65 cfs @ 12.59 hrs, Volume= 1.765 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3



Reach 12R: POI 6

Summary for Reach 13R: POI 7

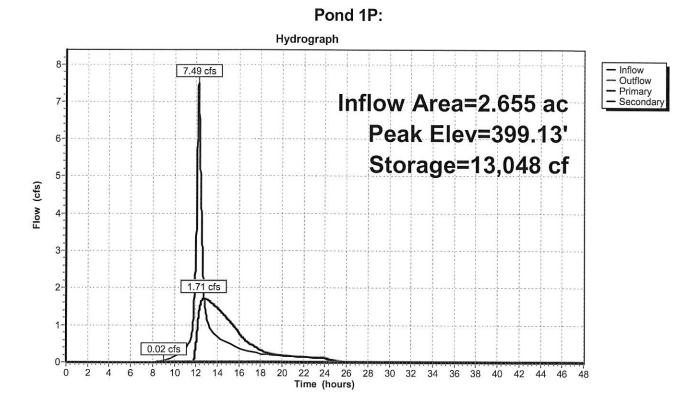
Inflow Are	a =	18.183 ac,	7.10% Impervious, Inflo	w Depth = 3.11"	for 25-Year Storm event
Inflow	=	29.24 cfs @	12.66 hrs, Volume=	4.716 af	
Outflow	=	29.24 cfs @	12.66 hrs, Volume=	4.716 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3

Reach 13R: POI 7

Summary for Pond 1P:

Inflow Area =	2.655 ac, 17.76% Impervious, Inflow De	epth = 3.21" for 25-Year Storm event
Inflow =	7.49 cfs @ 12.21 hrs, Volume=	0.710 af
Outflow =	1.73 cfs @ 12.76 hrs, Volume=	0.684 af, Atten= 77%, Lag= 32.8 min
Primary =	1.71 cfs @ 12.76 hrs, Volume=	0.619 af
Secondary =	0.02 cfs @ 9.05 hrs, Volume=	0.066 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 399.13' @ 12.76 hrs Surf.Area= 7,076 sf Storage= 13,048 cf

Plug-Flow detention time= 177.7 min calculated for 0.684 af (96% of inflow) Center-of-Mass det. time= 157.5 min (991.6 - 834.1)

Volume	Invert	Avail.Stor	rage Storage	e Description	
#1	395.67'	19,70	1 cf Custom	n Stage Data (Prismatic) Listed below (Recalc)	
- 1	•	C A			
Elevatio		urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
395.6	67	1,244	0	0	
397.1	7	2,196	2,580	2,580	
398.0	00	5,700	3,277	5,857	
400.0	00	8,144	13,844	19,701	
Device	Routing	Invert	Outlet Device	es	
#1	Secondary	395.67'	0.02 cfs Exfil	Itration at all elevations	
#2	Primary	397.17'	6.0" Vert. Ori	ifice/Grate C= 0.600	
#3	Primary	397.68'	4.0" Vert. Ori	ifice/Grate C= 0.600	
Primary	OutFlow M	lax=1.71 cfs @	🕑 12.76 hrs H	IW=399.13' TW=0.00' (Dynamic Tailwater)	
2=Or	ifice/Grate	Orifice Contro	ols 1.23 cfs @	6.29 fps)	
└──3=Or	ifice/Grate	Orifice Contro	ols 0.48 cfs @	5.45 fps)	
		191			
Secondary OutFlow May=0.02 of @ 0.05 hrs INV=205.701 TV/=0.001 (Dimension Tailuratar)					

Secondary OutFlow Max=0.02 cfs @ 9.05 hrs HW=395.70' TW=0.00' (Dynamic Tailwater) -1=Exfiltration (Exfiltration Controls 0.02 cfs) HydroCAD® 8.50 s/n 001265 © 2007 HydroCAD Software Solutions LLC

Summary for Pond 2P:

Inflow Area =	4.797 ac, 13.69% Impervious, Inflow Depth = 3.21" for 25-Year Storm event
Inflow =	9.63 cfs @ 12.47 hrs, Volume= 1.282 af
Outflow =	5.07 cfs @ 12.90 hrs, Volume= 1.221 af, Atten= 47%, Lag= 26.0 min
Primary =	5.04 cfs @ 12.90 hrs, Volume= 1.123 af
Secondary =	0.03 cfs @ 9.31 hrs, Volume= 0.098 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 408.00' @ 12.90 hrs Surf.Area= 9,389 sf Storage= 18,613 cf

Plug-Flow detention time= 152.2 min calculated for 1.221 af (95% of inflow) Center-of-Mass det. time= 125.7 min (977.3 - 851.6)

Volume	Invert	Avail.Sto	rage Storage D	escription	
#1	404.17	29,32	26 cf Custom S	Stage Data (Pri	ismatic) Listed below (Recalc)
Elevatio (fee 404.1 405.6	17 67	urf.Area (sq-ft) 2,136 3,168	Inc.Store (cubic-feet) 0 3,978 25,248	Cum.Store (cubic-feet) 0 3,978	
409.0	10	12,056	25,348	29,326	
Device	Routing	Invert	Outlet Devices		
#1	Secondary	404.17'	0.03 cfs Exfiltra	ation at all ele	vations
#2	Device 3	405.90'	0.5' long x 0.7' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50		
				2.76 2.82 2.	93 3.09 3.18 3.22 3.27 3.30 3.32
#2	Duiment	105 001	3.31 3.32	0 1 1 1	
#3	Primary	405.00'			CPP, square edge headwall, Ke= 0.500 0270 '/' Cc= 0.900 n= 0.013
Primary	OutFlow M	1ax=5.04 cfs (@ 12.90 hrs HW	=408.00' TW=	=0.00' (Dynamic Tailwater)

-3=Culvert (Passes 5.04 cfs of 9.11 cfs potential flow)

2=Broad-Crested Rectangular Weir (Weir Controls 5.04 cfs @ 4.80 fps)

Secondary OutFlow Max=0.03 cfs @ 9.31 hrs HW=404.20' TW=0.00' (Dynamic Tailwater) 1=Exfiltration (Exfiltration Controls 0.03 cfs) Post 10-26-17

10-

9-

8-

7-

5-

4-

3-

2-

1-

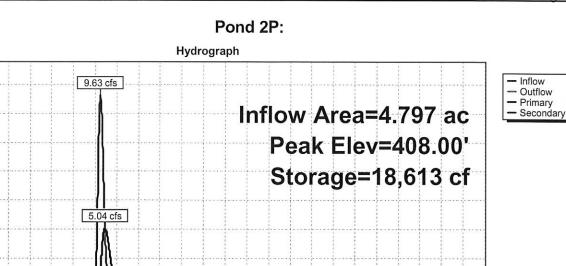
0-

0

2

0.03 cfs

10 12 14 16 18 20


8

6

4

Flow (cfs) 6-

Prepared by Gorrill Palmer HydroCAD® 8.50 s/n 001265 © 2007 HydroCAD Software Solutions LLC

28 30 32 34 36 38 40 42 44 46 48

22 24 26 Time (hours)

ATTACHMENT C

DITCH AND STORMDRAIN

.

GORRILL PALMER Relationships. Responsiveness. Results. www.gorrillpalmer.com	JOB SHEET NO, CALCULATED BY CHECKED BY SCALE	OF DATE DATE
STORM DRAINA	tGE	
DRIVENAY COLVERT LE	27 7	
TOTAL AREA = 2,96(803)	= 18,944 / = 0	0,43 Ac
1MP = 370 (13) = 4810 / 7	= 0,11 Ac c=0	2.9
111P = 3000 / 2 (House/D	w) = 0,07AC C=	0.9
1AUN = 6,000 fr2 =0.	14 Ac 6=0,2	
WOODS = 5/34 /12 =	O, RAC CEO, 2	
ASSUME TE=5 MIN	125=6.2 in/.	ku
$composite c = \frac{0.18}{0.43} ($	0,9) + 0,26(0,2) = 0,43	0,50
Q25 = 0,5(6,2)(0.43)	/ / · · · ·	
USE 12 CULVERT		
INCET STA 24+00	RT	
FROM LOT 7 DRIVEWAY CUL	vert A=0.43 (== 0.50
TOTAL ADDITIONAL AREA =	5,02 (802) = 32	128 ft 2-0.74Ac
PAVE = 120(13) + 90(20) = 3		
VEG = 28,768/12 = 0.		
COMPOSITE C = 0.43(0.5) + 0.0 1.17(0.5) + 0.0	8 (0,9) + 0,66 (0,20) = 0,36

JOB 3236,01	
SHEET NO.	OF
11	10 23 12
CALCULATED BY	DATE
CHECKED BY	DATE
SCALE	

INLET STA 24+00 RT ASSUME TE = 5 MIN 225 = 6,2 in/h Q25=0.36(6,2)(1.17)= 2,6 yz USE 12 5D INLET STA 24 too LT USE 12 BY INSPECTION A= 0,29AC C= 0,55 DRIVEWAY CULVERT LOT 8 USE 12 BY INSPECTION DRIVEWAY CULVERT LOT 9 TOTAL AREA = 11.98 (802) = 76,672 / = 1.76 Ac IMP = 3,000 + 3000 + 250 (13) = 9250/12 = 0,2 Ac = 0,9 VEG= 67,422 / = 1,55 Ac C=0,2 compositie c = 0.2 (0.9) + 1.55 (0.2) = 0.28 $\overline{1.76}(0.9) + \frac{1.55}{1.76}(0.2) = 0.28$ FROMAHYDROCAD TC = 30 MIN Q25 = 0,28 (3) 1.76 = 1.5 4/2 125=3 in/h USE 12 COWERT

JOB 3236.01 GORRILL SHEET NO. DATE 10-27-17 CALCULATED BY PAI MFR Relationships. Responsiveness. Results. CHECKED BY ____ DATE www.gorrillpalmer.com SCALE LOT 10 DRIVEWAY CULVERT FROM LOT 9 DRIVEWAY CULVERT A= 1.76 4, C= 0,28 TOTAL ADDITIONAL AREA = 12.65(802) = 80,960 fre TO INCET de 15tou RT =1,86 Ac IMP = 3000 42 + 150(13) = 4950 / O.IIAc C=0.9 VEG = 76,010 /1 = 1.74 Ac c=0.2 $\frac{1.76}{3.92} \left(0.28 \right) + 0.11 \left(0.9 \right) + \frac{1.74}{3.92} \left(0.2 \right)$ $\frac{3.92}{3.92} \left(0.11 - \frac{1.74}{3.92} \left(0.2 \right) + \frac{1.74}{3.92} \left(0.2 \right) + \frac{1.74}{3.92} \left(0.2 \right)$ COMPOSITE C-= 6=0.24 Q25=0,24(3)(3.92) = 2.82 CA USE 15 CULVERT CBI IMP = 190 (15) = 2850 / C=0.9 TE=5 MM Q25- 0.9(6,2) 0.06 = 0.33 cf2 CB 2 220(13) = 2860 fr 2 C= 0.9 Tc = 5 M/m Q25 = 0.9(6.2) 0.07 = 0.39 4/2 LOT I DRIVEWAY CULVERT = 12" BY INSPECTION

JOB_3236,01	
SHEET NO.	OF
CALCULATED BY	DATE 10-27-17
CHECKED BY	DATE
SCALE	

ROADSIDE DITCH FLOW ASSUMIND WORST CASE AT STA 16 tOO RT + Q= 2,8 41 PERMISSIBLE VEGETATED VELOCITY WOOD BRIDGE SOIL = 3/11/2 V= 2,8 /1/2 USE NEGETATED LINING DITCH TO GRASSED UNDERDRAINED SOIL FILTER ADJACENT TO LOT 3 RIP RAP SLOPE DED = 6 DITCH TO GRASSED UNDERDRAINED SOIL FILTER ADJACENT TO LOT 1 LOW FLOW FROM LEFT SIDE ROADSIDE DITCH USE VEGETATED LINING

MAINE EROSION AND SEDIMENT CONTROL BMPs - 10/2016

SOIL NAME	K factor	ACE WATER RMISSIBLE ELOCITY		WATER	DEPTH TO BEDROCK	11/2 21/2			
SOL NAME	(10"-20")	BARE ft/sec	VEGETATED ft/sec.	INFLOW RATE cfs/1000 ft.	Kind	Depth in ft	Duration	inches	HYDRIO SOIL
Hydrologic	Group C			1.					
Becket	0.17	1.5	3	0.1	Perched	2.0-3.5	Mar-Apr	>60	N
Chesuncook*	0.24/0.32	1.5	3	0.1	Perched	1.5-3.0	Mar-May	>60	Ν
Conant	0.24	2	3.5	0.15	Apparent	1.0-2.5	Nov-May	>60	N
Dixfield*	0.20	2	3.5	0.1	Perched	1.5-2.5	Nov-Apr	>60	Ν
Elliottsville	0.24	1.5	3					20-40	N
Howland*	0.24	2	3.5	0.1	Perched	1.5-2.5	Oct-May	>60	N
Linneus	0.28	1.5	3					20-40	N
Mapleton	0.20	2	3.5					10-20	N
Marlow	0.24/0.32/0.20	2	4	0.1	Perched	2.0-3.5	Mar-Apr	>60	N
Melrose	0.32/0.49	2	4	0.1		>6		>60	N
Paxton	0.24/0.32/0.20	2	4	0.1	Perched	2.0-3.5	Mar-Apr	>60	N
Penquis	0.32	1.5	3					20-40	N
Perham*	0.24/0.32/0.37	1.5	3	0.1	Perched	1.5-2.5	Mar-May	>60	N
Peru*	0.24/0.32/0.37	1.5	3	0.1	Perched	1.5-2.5	Nov-May	>60 >60	N
Plaisted	0.24	2	3.5	0.1	Perched	2.0-3.5	Nov-May	>60	N
Ragmuff*						2.0-3.5			19191
Rawsonville	- Mary Market Market Andre						10. (A. (A. (A. (A. (A. (A. (A. (A. (A. (A		
Sisk	0.28/0.32					>6			N
Skerry**	0.20/0.28/0.17	1.5	3	0.1	Perched			>60	N
Suffield	0.32/0.49	1.5	3.5	0.05	Perched	1.5-2.5 1.5-3.0	Nov-May	>60	N
Surplus*	0.28/0.32				Perched		Nov-May	>60	N
Tunbridge	0.24/0.20	2	3.5	iliona agus a	Perched	1.0-2.0	Oct-May	>60	N
Winnecook	0.28	1.5	3	1				20-40 20-40	N
Hydrologic	Group C/D						a and a		
Boothbay #	0.32/0.49	1.5	3	0.05	Annorma	1000	New Merry	. 00	N
Buxton #	0.32/0.49	1.5	3.5	0.05	Apparent	1.0-2.0	Nov-May	>60	
Chesuncook**	0.24/0.32	1.5	3	0.00	Perched	1.5-3.0	Nov-May	>60	N N
Dixfield**	0.20	2	3.5	0.1	Perched	1.5-3.0	Mar-May	>60	
Dixmont	0.28	1.5	3	0.15	Perched	1.5-2.5	Nov-Apr	>60	N
Easton	0.24/0.37	1.5	3	0.15	Perched	1.0-2.0	Nov-Jun	>60	N
Howland**	0.24	2	3.5	0.1	Apparent	0-1.5	Oct-May	>60	Y/N
Lamoine	0.32/0.49	1.5	3	0.05	Perched	1.5-2.5	Oct-May	>60	N
Leicester	0.32	1.5	3	0.00	Perched	0.5-2.0	Nov-Jun	>60	N
Perham**	0.24/0.32/0.37	1.5	3		Perched	0-1.0	Nov-Jun	>60	Y
Peru**	0.24/0.32/0.37	1.5		0.1	Perched	1.5-2.5	Mar-May	>60	N
Pushaw	0.27/0.32/0.31	1.5	3	0.1	Perched	1.5-2.5	Nov-May	>60	N
Ragmuff**			TEN AND DEPENDENCE	 22500000000	 1049404332	elesensensen	 	 URINGERISTER	 2-3686763
Kagmun Skerry*	0.20/0.28/0.17			0.4		Act Man			
Skerry Surplus**		1.5	3	0.1	Perched	1.5-2.5	Nov-May	>60	N
and a second second second second second	0.28/0.32				Perched	1.0-2.0	Oct-May	>60	N
Washburn	0.24/0.37	2	3.5	0.1	Apparent	+1-0.5	Oct-Jul	>60	Y
Woodbridge	0.24/0.32/0.37	1.5	(3)	0.1	Perched	1.5-2.5	Nov-May	>60	Ν

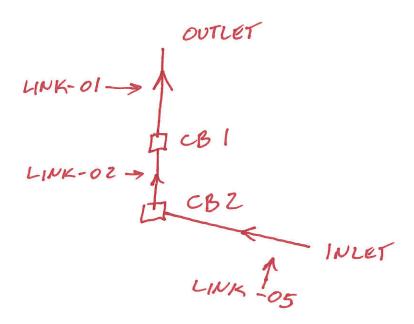
TRAPAZOIDAL DITCH SIZING Gorrill Palmer

JOB DATA

Project:	3236.01
Calc. by:	JWA
Date:	10/26/2017
Ditch at:	

EQUATIONS:

Manning's Equation, V = $(1.49/n)R^{2/3}S^{1/2}$ Q = VA Froude number, F = V/(gd)^{1/2}


INPUT:

Base width (b) =	1.0 ft	
Sideslope (z) =	3 on 1	
Sideslope (z) =	3 on 1	
Depth of flow (d) =	0.44 ft	
Manning's n =	0.030	(grass)
Slope of ditch (s) =	0.0180 ft/ft	

OUTPUT:

	Wet Perimeter (P) =	3.78 ft
	Area of Flow (A) =	1.02 sq. ft.
	Hydr. Radius (R) =	0.27 ft
And the second s	Velocity of Flow (V) =	2.8 fps
and the second s	Flow Capacity (Q) =	2.8 cfs
	Froude Number (F) =	0.74 <1, subcritical flow

Element Description ID	From (Inlet) Node	To (Outlet) Node	Length	1991 - 1992 - 19		Invert	Invert	Drop	Average Slope	Pipe Shape	Pipe Diameter or Height
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)		(inches)
Link-01	Inlet-01	Out-01	77.00	406.82	0.00	405.00	0.00	1.82	2.3600	CIRCULAR	15.000
Link-02	Inlet-02	Inlet-01	22.00	407.20	-0.10	406.92	0.10	0.28	1.2700	CIRCULAR	15.000
Link-05	64	Inlet-02	48.00	410.00	0.00	407.30	0.00	2.70	5.6200	CIRCULAR	15.000
	ID Link-01 Link-02	ID Node Link-01 Inlet-01 Link-02 Inlet-02	ID Node Node Link-01 Out-01 Link-02 Inlet-02 Inlet-01	ID Node Node (ft) Link-01 Inlet-01 Out-01 77.00 Link-02 Inlet-02 Inlet-01 22.00	ID Node Node Invert ID Node Node Invert Elevation (ft) (ft) Link-01 Inlet-01 Out-01 77.00 406.82 Link-02 Inlet-02 Inlet-01 22.00 407.20	ID Node Node Invert Invert Elevation Offset (ft) (ft) (ft) Link-01 Inlet-01 Out-01 77.00 406.82 0.00 Link-02 Inlet-02 Inlet-01 22.00 407.20 -0.10	IDNodeNodeInvertInvertInvertIDNodeNodeInvertInvertInvertElevationOffsetElevation(ft)(ft)(ft)(ft)Link-01Inlet-01Out-0177.00406.820.00Link-02Inlet-02Inlet-0122.00407.20-0.10	ID Node Node Node Invert Inver	IDNodeNodeInvert ElevationInvert OffsetInvert ElevationInvert OffsetInvert DropLink-01Inlet-01Out-0177.00406.820.00405.000.001.82Link-02Inlet-02Inlet-0122.00407.20-0.10406.920.100.28	ID Node Node Invert Invert Invert Invert Invert Drop Slope ID Node Node Invert Invert Invert Invert Drop Slope Ink-01 Inlet-01 Out-01 77.00 406.82 0.00 405.00 0.00 1.82 2.3600 Link-02 Inlet-02 Inlet-01 22.00 407.20 -0.10 406.92 0.10 0.28 1.2700	IDNodeNodeInvertInvertInvertInvertInvertDropSlopeShapeInk-01Inlet-01Out-0177.00406.820.00405.000.001.822.3600CIRCULARLink-02Inlet-02Inlet-0122.00407.20-0.10406.920.100.281.2700CIRCULAR

Pipe	Manning's	Entrance	Exit/Bend	Additional	Initial	Flap	Lengthening	Peak	Time of	Max	Travel	Design
Width	Roughness	Losses	Losses	Losses	Flow	Gate	Factor	Flow	Peak	Flow	Time	Flow
									Flow	Velocity		Capacity
									Occurrence			
(inches)					(cfs)			(cfs)	(days hh:mm)	(ft/sec)	(min)	(cfs)
15.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	2.77	0 00:30	5.85	0.22	8.61
15.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	2.77	0 00:30	4.77	0.08	7.36
15.00	0.0150	0.5000	0.8000	0.0000	0.00	NO	1.00	2.77	0 00:30	5.51	0.15	13.28

Max Flow /	Max	Total	Max	Reported
Design Flow	Flow Depth /	Time	Flow	Condition
Ratio	Total Depth	Surcharged	Depth	
	Ratio			
		1	(41)	
		(min)	(ft)	
0.32	0.41	(min) 0.00	(π) 0.51	Calculated
0.32 0.38	0.41 0.48	• •	x -7	Calculated Calculated

SN	Element ID	X Coordinate	Y Coordinate Description	Invert Elevation	Boundary Type	Flap Gate	Fixed Water Elevation	Peak Inflow
1	Out-01	2205.88	8431.37	(ft) 405.00	NORMAL	NO	(ft)	(cfs) 2.77

Peak	Maximum	Maximum
Lateral	HGL Depth	HGL Elevation
Inflow	Attained	Attained
(cfs)	(ft)	(ft)
0.00	0.49	405.49

SN	Element ID	X Coordinate	Y Coordinate Description	Inlet Manufacturer	Manufacturer Part Number
1	Inlet-01	2205.88	7647.06	FHWA HEC-22 GENERIC	N/A
2	Inlet-02	2215.69	7088.24	FHWA HEC-22 GENERIC	N/A

Inlet Location		Catchbasin Invert Elevation	Max (Rim) Elevation	Max (Rim) Offset	Initial Water Elevation	Water	Ponded Area	Grate Clogging Factor	Roadway Longitudinal Slope
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft²)	(%)	(ft/ft)
On Sag	1	406.82	412.51	5.69	0.00	0.00	10.00	0.00	N/A
On Sag	1	407.30	412.55	5.25	0.00	0.00	10.00	0.00	N/A

Roadway	Roadway	Gutter	Gutter	Gutter	Median	Median	Median	Median
Cross	Manning's	Cross	Width	Depression	Ditch	Ditch	Ditch	Ditch
Slope	Roughness	Slope			Longitudinal	Bottom	Left Side	Right Side
					Slope	Width	Slope	Slope
(ft/ft)		(ft/ft)	(ft)	(inches)	(ft/ft)	(ft)	(V:H)	(V:H)
0.0200	0.0160	0.0620	2.00	2.0000	45.0000	45.0000	64	64
0.0200	0.0160	0.0620	2.00	2.0000	45.0000	45.0000	64	64

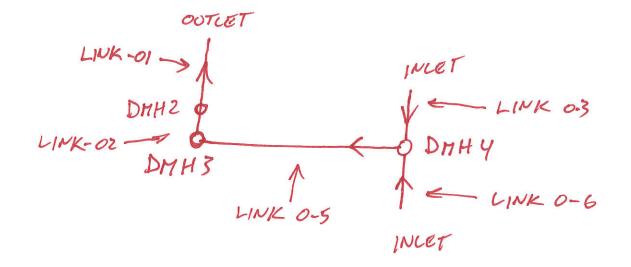
Median	Peak	Peak	Peak	Peak	Inlet	Allowable	Max Gutter	Max Gutter
Ditch	Flow	Lateral	Flow	Flow	Efficiency	Spread	Spread	Water Elev.
Manning's		Inflow	Intercepted	Bypassing	during		during	during
Roughness			by Inlet	Inlet	Peak Flow		Peak Flow	Peak Flow
	(cfs)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
45.0000	0.33	0.33	N/A	N/A	N/A	7.00	0.43	412.60
45.0000	0.39	0.39	N/A	N/A	N/A	7.00	0.51	412.66

Max Gutter	Time of	Total	Total
Water Depth	Maximum	Flooded	Time
during	Depth	Volume	Flooded
Peak Flow	Occurrence		
(ft)	(days hh:mm)	(ac-inches)	(minutes)
0.09	0 00:30	0.00	0.00

SN	Element ID	X Coordinate	Y Coordinate Description	Invert Elevation	Ground/Rim (Max) Elevation	Ground/Rim (Max) Offset	Initial Water Elevation
1	64	3705.88	6843.14	(ft) 410.00	(ft) 413.00	(ft) 3.00	(ft) 0.00

Initial	Surcharge	Surcharge	Ponded	Minimum	Peak	Peak	Maximum	Maximum	Maximum
Water	Elevation	Depth	Area	Pipe Cover	Inflow	Lateral	HGL	HGL	Surcharge
Depth						Inflow	Elevation	Depth	Depth
							Attained	Attained	Attained
(ft)	(ft)	(ft)	(ft²)	(inches)	(cfs)	(cfs)	(ft)	(ft)	(ft)
-410.00	0.00	-413.00	0.00	21.00	2.78	2.78	410.41	0.41	0.00

Minimum	Average	Average	Time of	Time of	Total	Total
Freeboard	HGL	HGL	Maximum	Peak	Flooded	Time
Attained	Elevation	Depth	HGL	Flooding	Volume	Flooded
			_	_		
	Attained	Attained	Occurrence	Occurrence		
(ft)	Attained (ft)	Attained (ft)	Occurrence (days hh:mm)	Occurrence (days hh:mm)	(ac-inches)	(minutes)


SN	Element Description ID	Area	Drainage Node ID	Weighted Runoff Coefficient	Accumulated Precipitation	Total Runoff	Peak Runoff	Rainfall Intensity
		(acres)			(inches)	(inches)	(cfs)	(inches/hr)
1	Sub-01	3.92	64	0.2400	1.48	0.35	2.78	2.950
2	Sub-03	0.06	Inlet-01	0.9000	0.52	0.47	0.34	6.200
3	Sub-04	0.07	Inlet-02	0.9000	0.52	0.47	0.39	6.200

Time of Concentration

(days hh:mm:ss)

- 0 00:30:00
- 0 00:05:00
- 0 00:05:00

SN	Element Description ID	From (Inlet) Node	To (Outlet) Node	Length	Inlet Invert Elevation	Inlet Invert Offset	Outlet Invert Elevation	Outlet Invert Offset	
				(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
1	Link-01	64	Out-01	55.00	407.40	0.00	407.00	0.00	0.40
2	Link-02	64	64	23.00	408.15	0.00	407.50	0.10	0.65
3	Link-03	Inlet-01	64	11.00	413.00	0.00	410.78	0.10	2.22
4	Link-05	64	64	255.00	410.68	0.00	408.25	0.10	2.43
5	Link-06	64	64	29.00	413.00	0.00	410.78	0.10	2.22

Average Slope	Pipe Shape	Pipe Diameter or Height	Pipe Width	Manning's Roughness	Entrance Losses	Exit/Bend Losses	Additional Losses	Initial Flow	Flap Gate
(%)		(inches)	(inches)					(cfs)	
0.7300	CIRCULAR	15.000	15.00	0.0150	0.5000	0.5000	0.0000	0.00	NO
2.8300	CIRCULAR	12.000	12.00	0.0150	0.5000	0.5000	0.0000	0.00	NO
20.1800	CIRCULAR	12.000	12.00	0.0150	0.5000	0.8000	0.0000	0.00	NO
0.9500	CIRCULAR	12.000	12.00	0.0150	0.5000	0.8000	0.0000	0.00	NO
7.6600	CIRCULAR	12.000	12.00	0.0150	0.5000	0.8000	0.0000	0.00	NO

Lengthening Factor		Time of Peak Flow Occurrence	Max Flow Velocity	Travel Time	Design Flow Capacity	Max Flow / Design Flow Ratio	Max Flow Depth / Total Depth Ratio	Total Time Surcharged
	(cfs)	(days hh:mm)	(ft/sec)	(min)	(cfs)			(min)
1.00	2.98	0 00:06	3.72	0.25	4.77	0.62	0.62	0.00
1.00	2.98	0 00:06	4.84	0.08	5.19	0.57	0.73	0.00
1.00	0.99	0 00:05	6.24	0.03	13.87	0.07	0.51	0.00
1.00	2.98	0 00:06	4.28	0.99	3.01	0.99	0.85	0.00
1.00	2.60	0 00:05	6.60	0.07	8.54	0.30	0.62	0.00

Max	Reported
Flow	Condition
Depth	

(ft)	
0.78	Calculated
0.73	Calculated
0.51	Calculated
0.85	Calculated
0.62	Calculated

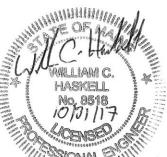
SN	Element ID	X Coordinate	Y Coordinate Description	Invert Elevation	Boundary Type	Flap Gate	Fixed Water Elevation	Peak Inflow
1	Out-01	1627.45	7509.80	(ft) 407.00	NORMAL	NO	(ft)	(cfs) 2.98

Peak	Maximum	Maximum
Lateral	HGL Depth	HGL Elevation
Inflow	Attained	Attained
(cfs)	(ft)	(ft)
0.00	0.72	407.72

SN	Element ID	X Coordinate	Y Coordinate Description	Invert Elevation	Ground/Rim (Max) Elevation	Ground/Rim (Max) Offset	Initial Water Elevation
				(ft)	(ft)	(ft)	(ft)
1	Inlet-01	3627.45	6568.63	413.00	416.00	3.00	0.00
2	64	1617.65	6735.29 DMH2	407.40	412.00	4.60	0.00
3	64	1616.81	6420.22 DMH3	408.15	418.00	9.85	0.00
4	64	3626.98	6312.68 DMH4	410.68	415.78	5.10	0.00
5	64	3631.12	6047.97	413.00	416.00	3.00	0.00

Initial Water Depth	Surcharge Elevation	Surcharge Depth	Ponded Area	Minimum Pipe Cover	Peak Inflow	Peak Lateral Inflow	Maximum HGL Elevation Attained	Maximum HGL Depth Attained	Maximum Surcharge Depth Attained
(ft)	(ft)	(ft)	(ft²)	(inches)	(cfs)	(cfs)	(ft)	(ft)	(ft)
-413.00	0.00	-416.00	10.00	24.00	0.99	0.99	413.18	0.18	0.00
-407.40	0.00	-412.00	0.00	40.20	2.98	0.00	408.24	0.84	0.00
-408.15	0.00	-418.00	0.00	105.00	2.98	0.00	408.88	0.73	0.00
-410.68	0.00	-415.78	0.00	48.00	3.59	0.00	411.64	0.96	0.00
-413.00	0.00	-416.00	0.00	24.00	2.61	2.61	413.43	0.43	0.00

Minimum Freeboard Attained	Average HGL Elevation	Average HGL Depth	Time of Maximum HGL	Time of Peak Flooding	Total Flooded Volume	Total Time Flooded
	Attained	Attained	Occurrence	Occurrence		
(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-inches)	(minutes)
2.82	413.01	0.01	0 00:05	0 00:00	0.00	0.00
3.76	407.42	0.02	0 00:06	0 00:00	0.00	0.00
9.12	408.17	0.02	0 00:06	0 00:00	0.00	0.00
4.14	410.71	0.03	0 00:06	0 00:00	0.00	0.00
2.57	413.01	0.01	0 00:05	0 00:00	0.00	0.00


SN	Element Description ID	Area	Drainage Node ID	U	Accumulated Precipitation	Total Runoff	Peak Runoff	Rainfall Intensity
		(acres)			(inches)	(inches)	(cfs)	(inches/hr)
1	Sub-01	0.29	Inlet-01	0.5500	0.52	0.28	0.99	6.200
2	Sub-02	1.17	64	0.3600	0.52	0.19	2.61	6.200

Time of Concentration

(days hh:mm:ss)

0 00:05:00 0 00:05:00

EROSION AND SEDIMENTATION CONTROL BASIC STANDARDS

I.I <u>Overview</u>

This Exhibit demonstrates the developer has made adequate provision for controlling erosion and sedimentation.

I.2 Introduction

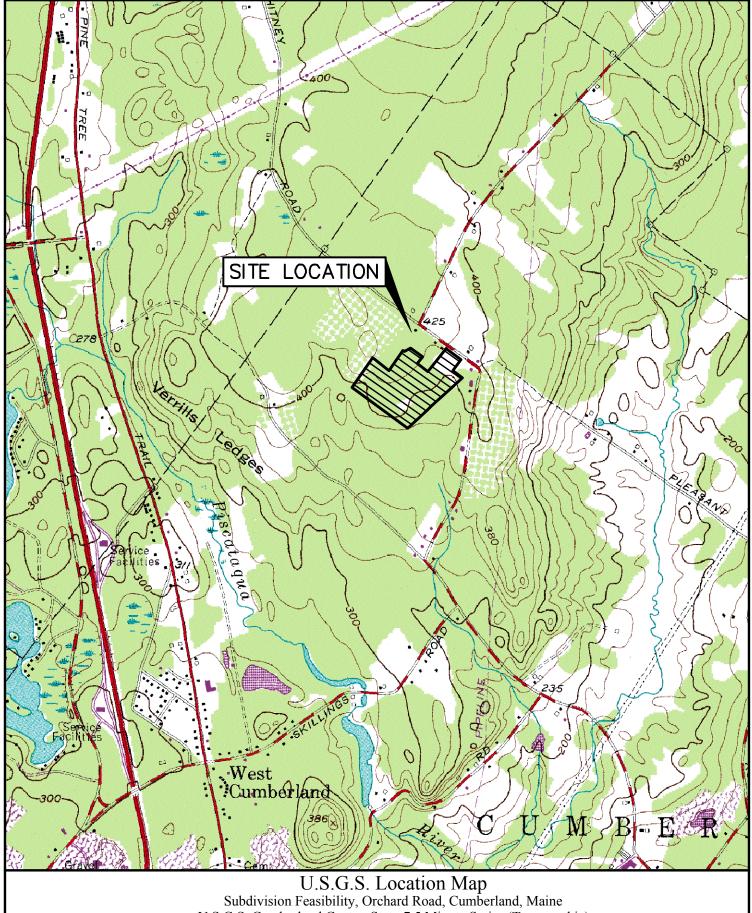
Gorrill Palmer has been retained by TZ Properties, LLC to prepare an Erosion and Sedimentation Control Report for a proposed 10 lot residential subdivision off Orchard Road in Cumberland, Maine. TZ Properties, LLC proposes the construction of the roadway, stormwater management facilities, and electric service to the transformer location. House lot construction will be by the individual lot owners. Figure I is a map showing the project location. The developer is currently seeking a Subdivision Permit from the Town of Cumberland and a Stormwater Permit from MDEP. Gorrill Palmer has prepared an Erosion and Sedimentation Control Plan for the proposed development. This narrative contains the general erosion and sedimentation control measures, which are appropriate for the construction of the project.

1.3 Narrative

1.3.1 Existing Conditions and Soil Types

The development parcel is approximately 24.9 acres in size and is located off Orchard Road in Cumberland, Maine. The site is currently undeveloped and forested. Abutting land uses include:

- North Residential
- East Residential
- South Residential/Undeveloped
- West Residential/Apple Orchard

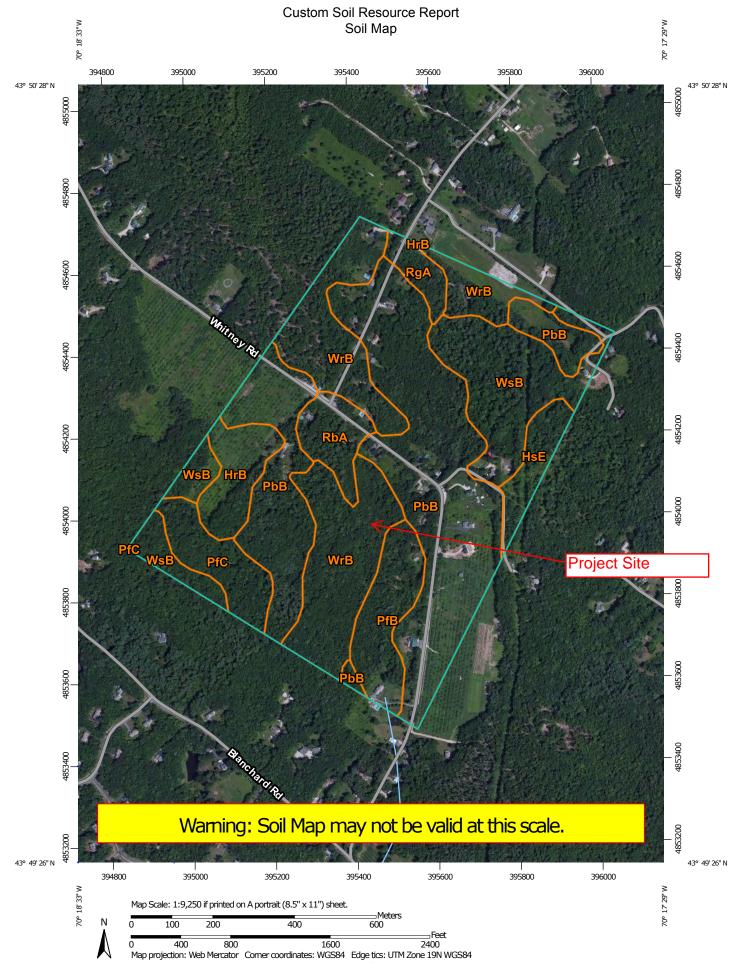

Topography in the area of the proposed construction is moderately steep with slopes of approximately 5% to 17%.

The Medium Intensity Soil Survey for Cumberland County as prepared by the Natural Resources Conservation Service was utilized in identifying the on-site soils. The soil report for this vicinity follows this page. The susceptibility of soils to erosion is indicated on a relative "K" scale of values over a range of 0.02 to 0.69. The higher values are indicative of the more erodible soils. The following table lists the soils found on site and their K values:

K VALUE					
Туре	Substratum				
Hollis	0.32	-			
Paxton	0.32	0.20			
Ridgebury	0.24	0.24			
Woodbridge	0.32	0.24			

Basic Standards Page I

Orchard Road Subdivision Cumberland, Maine Subdivision Application


U.S.G.S. Cumberland Center, State-7.5 Minute Series (Topographic)

Design: WCH	Date: OCT 2017					
Draft: LAN	Job No.: 3236.01					
Checked: WCH	Scale: None					
File Name: 3236-LOCMAP.dwg						

Relationships. Responsiveness. Results. www.gorrillpalmer.com 207.772.2515 Figure

1

	MAP L	EGEND		MAP INFORMATION		
Area of In	Area of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at 1:24,000.		
	Area of Interest (AOI)	۵	Stony Spot			
Soils	Soil Map Unit Polygons	Ø	Very Stony Spot	Warning: Soil Map may not be valid at this scale.		
~	Soil Map Unit Lines	\$	Wet Spot	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line		
	Soil Map Unit Points		Other Special Line Features	placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.		
Special	Point Features			Solis that could have been shown at a more detailed scale.		
అ	Blowout	Water Fea	tures Streams and Canals	Please rely on the bar scale on each map sheet for map		
X	Borrow Pit	~		measurements.		
×	Clay Spot	Transport	ation Rails			
\diamond	Closed Depression	~	Interstate Highways	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov		
X	Gravel Pit	~	US Routes	Coordinate System: Web Mercator (EPSG:3857)		
0 0 0	Gravelly Spot	~	Major Roads	Maps from the Web Soil Survey are based on the Web Mercator		
0	Landfill	~	Local Roads	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the		
Α.	Lava Flow	Backgrou	nd	Albers equal-area conic projection that preserves area, such as the		
علله	Marsh or swamp	No.	Aerial Photography	calculations of distance or area are required.		
Ŕ	Mine or Quarry			This product is generated from the USDA-NRCS certified data as of		
0	Miscellaneous Water			the version date(s) listed below.		
0	Perennial Water			Soil Survey Area: Cumberland County and Part of Oxford County,		
\vee	Rock Outcrop			Maine		
+	Saline Spot			Survey Area Data: Version 12, Sep 15, 2016		
0 0 0 0	Sandy Spot			Soil map units are labeled (as space allows) for map scales 1:50,000		
-	Severely Eroded Spot			or larger.		
\$	Sinkhole			Date(s) aerial images were photographed: Jun 20, 2010—Jul 18,		
≫	Slide or Slip			2010		
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		

Cumberland County and Part of Oxford County, Maine (ME005)							
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI				
HrB	Hollis fine sandy loam, 3 to 8 percent slopes	8.8	4.5%				
HsE	Hollis very rocky fine sandy loam, 20 to 35 percent slopes	6.0	3.1%				
PbB	Paxton fine sandy loam, 3 to 8 percent slopes	76.5	39.3%				
PfB	Paxton very stony fine sandy loam, 3 to 8 percent slopes	11.9	6.1%				
PfC	Paxton very stony fine sandy loam, 8 to 15 percent slopes	9.5	4.9%				
RbA	Ridgebury fine sandy loam, 0 to 3 percent slopes	7.1	3.6%				
RgA	Ridgebury very stony fine sandy loam, 0 to 3 percent slopes	3.9	2.0%				
WrB	Woodbridge fine sandy loam, 0 to 8 percent slopes	42.9	22.0%				
WsB	Woodbridge very stony fine sandy loam, 0 to 8 percent slopes	28.2	14.5%				
Totals for Area of Interest		194.7	100.0%				

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different

Based on a review of the K Values, the on-site soils have moderate susceptibility to erosion.

I.3.2 Existing Erosion Problems

Gorrill Palmer is not aware of any existing erosion problems on site.

1.3.3 Critical Areas

Critical areas that would require special attention during construction would be side slopes adjacent to any wetlands or streams.

I.3.4 Protected Natural Resources

Wetlands on-site have been delineated and GPS located by TRC of Scarborough, Maine, and are shown on project plans. The total area of wetlands located on the site is approximately 88,453 +/- s.f. (2.03 acres). It is anticipated that approximately 3,802 s.f. of wetlands will be impacted during development of the site. Based upon the FEMA maps, the site is not located within a Zone A 100-year floodplain.

1.3.5 Erosion Control Measures and Site Stabilization

The primary emphasis of the erosion/sedimentation control plan, which will be implemented for this project, is as follows:

- Development of a careful construction sequence.
- Rapid revegetation of denuded areas to minimize the period of soil exposure.
- Rapid stabilization of drainage paths to avoid rill and gully erosion.
- The use of on-site measures to capture sediment (hay bales/ stone check dams/silt fence, etc.)

The following temporary and permanent erosion and sediment control devices will be implemented as part of the site development. These devices shall be installed as indicated on the plans or as described within this report. For further reference, see the latest edition of the Maine Erosion and Sediment Control Practices Field Guide for Contractors.

A. Dewatering

Water from construction trench dewatering shall pass first through a filter bag or secondary containment structure (e.g. hay bale lined pool) prior to discharge. The discharge site shall be selected to avoid flooding, icing, and sediment discharges to a protected resource. In no case shall the filter bag or containment structure be located within 50 feet of a protected natural resource.

B. Inspection and Monitoring

Maintenance measures shall be applied as needed during the entire construction season. After each rainfall, snow storm or period of thawing and runoff, the site contractor shall perform a visual inspection of all installed erosion control measures and perform repairs as needed to insure their continuous function. Following the temporary and/or final seeding and mulching, the contractor shall in the spring inspect and repair any damages and/or unestablished spots. Established vegetative cover means a minimum of 90% of areas vegetated with vigorous growth.

The following standards must be met during construction.

(a) **Inspection and corrective action**. Inspect disturbed and impervious areas, erosion control measures, materials storage areas that are exposed to precipitation, and locations where vehicles enter or exit the site. Inspect these areas at least once a week as well as before and within 24 hours after a storm event (rainfall), and prior to completing permanent stabilization measures. A person with knowledge of erosion and stormwater control, including the standards and conditions in the permit, shall conduct the inspections.

(b) **Maintenance**. If best management practices (BMPs) need to be repaired, the repair work should be initiated upon discovery of the problem but no later than the end of the next workday. If additional BMPs or significant repair of BMPs are necessary, implementation must be completed within 7 calendar days and prior to any storm event (rainfall). All measures must be maintained in effective operating condition until areas are permanently stabilized.

(c) **Documentation**. Keep a log (report) summarizing the inspections and any corrective action taken. The log must include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and maintenance of erosion and sedimentation controls, materials storage areas, and vehicles access points to the parcel. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and location(s) where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken.

The log must be made accessible to MDEP and Town of Cumberland staff and a copy must be provided upon request. The permittee shall retain a copy of the log for a period of at least three years from the completion of permanent stabilization.

C. <u>Temporary Erosion Control Measures</u>

The following measures are planned as temporary erosion/sedimentation control measures during construction:

I. Crushed stone-stabilized construction entrance shall be placed at the entrance from Orchard Road.

2. Siltation fence or wood waste compost berms shall be installed downstream of any disturbed areas to trap runoff- borne sediments until grass areas are revegetated. The silt

fence and/or wood waste compost berms shall be installed per the details provided in this package and inspected at least once a week and before and immediately after a storm event of 0.5 inches or greater, and at least daily during prolonged rainfall. Repairs shall be made if there are any signs of erosion or sedimentation below the fence or berm line. If there are signs of undercutting at the center or the edges, or impounding of large volumes of water behind the fence or berm, the barrier shall be replaced with a stone check dam. Wood waste compost berms are not to be used adjacent to wetland areas that are not to be disturbed.

3. Straw or hay mulch including hydroseeding is intended to provide cover for denuded or seeded areas until revegetation is established. Mulch placed between April 15th and October 15th on slopes of less then 15 percent shall be anchored by applying water; mulch placed on slopes of equal to or steeper than 15 percent shall be covered by a fabric netting and anchored with staples in accordance with manufacturer's recommendation. Fabric netting and staples shall be used on disturbed areas within 50' of lakes, streams, and wetlands regardless of the upstream slope. Mulch placed between October 15th and April 15th on slopes equal to or steeper than 8 percent shall be covered with a fabric netting and anchored with staples in accordance with the manufacturer's recommendations. Slopes steeper than 3:1 and equal to or flatter than 2:1, which are to be revegetated, shall receive curlex blankets by American Excelsior or equal. Slopes steeper than 2:1 shall receive riprap as noted on the plans. The mulch application rate for both temporary and permanent seeding is 75 lbs per 1000 sf as identified in Attachment A of this section. Mulch shall not be placed over snow.

4. Temporary stockpiles of stumps, grubbings, or common excavation will be protected as follows:

a) Temporary stockpiles shall not be located within 100 feet of any wetlands which will not be disturbed and shall be located away from drainage swales.

b) Stockpiles shall be stabilized within 7 days by either temporarily seeding the stockpile by a hydroseed method containing an emulsified mulch tackifier or by covering the stockpile with mulch, such as hay, straw, or erosion control mix.

c) Stockpiles shall be surrounded by sedimentation barrier at the time of formation.

5. All denuded areas that are within 100 feet of an undisturbed wetland, which have been rough graded and are not located within a building pad, parking area, or access drive subbase area, shall receive mulch or erosion control mesh fabric within 48 hours of initial disturbance of soil. All areas within 100 feet of an undisturbed wetland shall be mulched prior to any predicted rain event regardless of the 48 hour window. In other areas, the time period may be extended to 7 days.

6. For work, which is conducted between October 15^{th} and April 15^{th} of any calendar year, all denuded areas, shall be covered with hay mulch or erosion control mix, applied at twice the normal application rate and anchored with a fabric netting. The time period for applying mulch shall be limited to 2 days for all areas.

Basic Standards Page 4 7. Orchard Road shall be swept to control mud and dust as necessary. Additional stone shall be added to the stabilized construction entrance to minimize the tracking of material off the site and onto the surrounding roadways.

8. During grubbing operations stone check dams shall be installed at any evident concentrated flow discharge points and as directed on the Erosion Control Plans.

9. Silt fencing with a minimum stake spacing of 6 feet shall be used, unless the fence is supported by wire fence reinforcement of minimum 14 gauge and with a maximum mesh spacing of 6 inches, in which case stakes may be spaced a maximum of 10 feet apart. The bottom of the fence shall be anchored. A double row of silt fence shall be used adjacent to wetlands.

10. Wood waste compost/bark berms may be used in lieu of siltation fencing. Berms shall be removed and spread in a layer not to exceed 3" thick once upstream areas are completed and a 90% catch of vegetation is attained.

11. Storm drain catch basin inlet protection shall be provided through the use of stone sediment barriers or approved sediment bags (such as Silt Sack). Installation details are provided in the plan set. The barriers shall be inspected after each rainfall and repairs made as necessary. Sediment shall be removed and the barrier restored to its original dimensions when the sediment has accumulated to $\frac{1}{2}$ the design depth of the barrier. The barrier shall be removed when the tributary drainage area has been stabilized.

12. Water and/or calcium chloride shall be furnished and applied in accordance with MDOT specifications – Section 637 – Dust Control.

13. Loam and seed is intended to serve, as the primary permanent revegetative measure for all denuded areas not provided with other erosion control measures, such as riprap. Application rates are provided in Attachment A of this section. Seeding shall not occur over snow.

D. Permanent Erosion Control Measures

The following permanent erosion control measures have been designed as part of the Erosion/Sedimentation Control Plan:

1. All areas disturbed during construction, but not subject to other restoration (paving, riprap, etc.) will be loamed, limed, fertilized, mulched, and seeded. Fabric netting, anchored with staples, shall be placed over the mulch in areas as noted in **Temporary Erosion Control Measures** paragraph 3 of this report. All areas within 100 feet of an undisturbed wetland shall be mulched prior to any predicted rain event regardless of the 48 hour window. Native topsoil shall be stockpiled and reused for final restoration when it is of sufficient quality.

2. All storm drain pipe outlets shall have riprap aprons at their outlet to protect the outlet and receiving channel from scour and deterioration. Installation details are provided in the plan set. The aprons shall be installed and stabilized to the extent practicable prior to directing runoff to the tributary pipe or culvert.

3. Catch basins shall be provided with sediment sumps and inlet hoods (the Snout) for all outlet pipes that are 18" in diameter or less.

I.4 Implementation Schedule

The following construction sequence shall be required to insure the effectiveness of the erosion and sedimentation control measures are optimized:

- It is anticipated that construction of the Subdivision roadway and related infrastructure will commence in Spring of 2018 and be completed by Winter of 2018.
- Note: For all grading activities, the contractor shall exercise extreme caution not to overexpose the site, this shall be accomplished by limiting the disturbed area.
- I. Install stabilized construction entrance at the intersection of the proposed roadway and Orchard Road.
- 2. Install perimeter silt fence and/or wood waste berms prior to grubbing respective areas.
- 3. Clear and grub roadway and stormwater management areas using caution not to overexpose the site. Install stone check dams at any evident concentrated flow discharge points.
- 4. Commence earthwork and grading to subgrade.
- 5. Commence installation of drainage appurtenances.
- 6. Commence construction grassed underdrained soil filter.
- 7. Commence installation of electric/cable/telephone lines.
- 8. Complete remaining earthwork operations.
- 9. Complete installation of catch basins and appurtenances.
- 10. Install sub-base and base gravel within roadway.
- 11. Install curbing along the streets as needed.
- 12. Install base course paving for roadway.
- 13. Loam, lime, fertilize, seed and mulch disturbed areas.
- 14. Install surface course paving for roadway. Stripe per plan.
- 15. Once the site is stabilized and a 90% catch of vegetation has been obtained, remove all temporary erosion control measures.
- 16. Touch up loam and seed.

Note: All denuded areas not subject to final paving, riprap, or gravel shall be revegetated.

Prior to construction of the project, the contractor shall submit to the owner a schedule for the completion of the work, which will satisfy the following criteria:

- 1. The above construction sequence should generally be completed in the specified order; however, several separate items may be constructed simultaneously. Work must also be scheduled or phased to reduce the extent of the exposed areas as specified below. The intent of this sequence is to provide for erosion control and to have structural measures such as silt fence and construction entrances in place before large areas of land are denuded.
- 2. The work shall be conducted in sections which shall:
 - a) Limit the amount of exposed area to those areas in which work is expected to be undertaken during the proceeding 30 days.
 - b) Revegetate disturbed areas as rapidly as possible. All areas shall be permanently stabilized within 7 days of final grading or before a storm event; or temporarily stabilized within 48 hours of initial disturbance of soil for areas within 100 feet of an undisturbed wetland and 7 days for all other areas. Areas within 100 feet of an undisturbed wetland shall be mulched prior to any predicted rain event regardless of the 48 hour window.
 - c) Incorporate planned inlets and drainage system as early as possible into the construction phase. The ditches shall be immediately lined or revegetated as soon as their installation is complete.

1.5 Erosion, Sedimentation and Stabilization Control Plan

The Erosion Control Plan is included in the plan set.

I.6 Details and Specifications

The Erosion Control details and specifications are included in the plan set.

I.7 Winter Stabilization Plan

The winter construction period is from November I through April 15. If the construction site is not stabilized with pavement, a road gravel base, 75% mature vegetation cover or riprap by November 15 then the site needs to be protected with over-winter stabilization. An area considered open is any area not stabilized with pavement; vegetation, mulching, erosion control mats, riprap or gravel base on a road.

Winter excavation and earthwork shall be completed such that any area left exposed can be controlled by the contractor. Limit the exposed area to those areas in which work is expected to be under taken during the proceeding 15 days and that can be mulched in one day prior to any snow event.

Basic Standards Page 7 All areas shall be considered to be denuded until the subbase gravel is installed in roadway/parking areas or the areas of future loam and seed have been loamed, seeded and mulched. Hay and straw mulch rate shall be a minimum of 150 lbs./1,000 s.f. (3 tons/acre) and shall be properly anchored.

The contractor shall install any added measures which may be necessary to control erosion/sedimentation from the site dependent upon the actual site and weather conditions. Continuation of earthwork operations on additional areas shall not begin until the exposed soil surface on the area being worked has been stabilized, in order to minimize areas without erosion control protection.

I. Soil Stockpiles

Stockpiles of soil or subsoil shall be mulched for over winter protection with hay or straw at twice the normal rate or at 150 lbs/1,000 s.f. (3 tons per acre) or with a four-inch layer of woodwaste erosion control mix. This shall be done within 24 hours of stocking and re-established prior to any rainfall or snowfall. Any soil stockpile shall not be placed (even covered with hay or straw) within 100 feet from any natural resources.

2. Natural Resource Protection

Any areas within 100 feet from any natural resources, if not stabilized with a minimum of 75% mature vegetation catch, shall be mulched by December I and anchored with plastic netting or protected with erosion control mats. During winter construction, a double line of sediment barriers (i.e. silt fence backed with hay bales or erosion control mix) shall be placed between any natural resource and the disturbed area. Projects crossing the natural resource shall be protected a minimum distance of 100 feet on either side from the resource. Existing projects not stabilized by December I shall be protected with the second line of sediment barrier to ensure functionality during the spring thaw and rains.

3. Sediment Barriers

During frozen conditions, sediment barriers shall consist of woodwaste filter berms as frozen soil prevents the proper installation of hay bales and sediment silt fences.

4. Mulching

An area shall be considered denuded until areas of future loam and seed have been loamed, seeded and mulched. Hay and straw mulch shall be applied at a rate of 150 lb. per 1,000 square feet or 3 tons/acre (twice the normal accepted rate of 75-lbs./1,000 s.f. or 1.5 tons/acre) and shall be properly anchored. Mulch shall not be spread on top of snow. The snow shall be removed down to a one-inch depth or less prior to application. After each day of final grading, the area shall be properly stabilized with anchored hay or straw or erosion control matting. An area shall be considered to have been stabilized when exposed surfaces have been either mulched with straw or hay at a rate of 150 lb. per 1,000 square feet (3 tons/acre) and adequately anchored that ground surface is not visible though the mulch.

Between the dates of November I and April 15, all mulch shall be anchored by peg line, mulch netting, asphalt emulsion chemical, or wood cellulose fiber. When ground surface is not visible through the mulch then cover is sufficient. After November 1st, mulch and anchoring of all bare soil shall occur at the end of each final grading workday.

Basic Standards Page 8

5. Mulching on Slopes and Ditches

Slopes shall not be left exposed for any extended time of work suspension unless fully mulched and anchored with peg and netting or with erosion control blankets. Mulching shall be applied at a rate of 230 lbs/1,000 s.f. on all slopes greater than 8%.

Mulch netting shall be used to anchor mulch in all drainage ways with a slope greater than 3% for slopes exposed to direct winds and for all other slopes greater that 8%. Erosion control blankets shall be used in lieu of mulch in all drainage ways with slopes greater than 8%. Erosion control mix can be used to substitute erosion control blankets on all slopes except ditches.

6. Seeding

Between the dates of October 15 and April 1st, loam or seed will not be required. During periods of above freezing temperatures finished areas shall be fine graded and either protected with mulch or temporarily seeded and mulched until such time as the final treatment can be applied. If the date is after November 1st and if the exposed area has been loamed, final graded with a uniform surface, then the area may be dormant seeded at a rate of 3 times higher than specified for permanent seed and then mulched. Dormant seeding may be selected to be placed prior to the placement of mulch and fabric netting anchored with staples. If dormant seeding is used for the site, all disturbed areas shall receive 4" of loam and seed at an application rate of 5 lbs/1,000 s.f. All areas seeded during the winter shall be inspected in the spring for adequate catch. All areas insufficiently vegetated (less than 75% catch) shall be revegetated by replacing loam, seed and mulch. If dormant seeding is not used for the site, all disturbed areas shall be revegetated in the spring.

Standards for Timely Stabilization of Construction Sites During Winter

I. Standard for the timely stabilization of ditches and channels -- The applicant shall construct and stabilize all stone-lined ditches and channels on the site by November 15. The applicant shall construct and stabilize all grass-lined ditches and channels on the site by September 1. If the applicant fails to stabilize a ditch or channel to be grass-lined by September 1, then the applicant will take one of the following actions to stabilize the ditch for late fall and winter.

<u>Install a sod lining in the ditch</u> -- The applicant shall line the ditch with properly installed sod by October I. Proper installation includes the applicant pinning the sod onto the soil with wire pins, rolling the sod to guarantee contact between the sod and underlying soil, watering the sod to promote root growth into the disturbed soil, and anchoring the sod with jute or plastic mesh to prevent the sod strips from sloughing during flow conditions.

<u>Install a stone lining in the ditch</u> --The applicant shall line the ditch with stone riprap by November 15. The applicant shall hire a registered professional engineer to determine the stone size and lining thickness needed to withstand the anticipated flow velocities and flow depths within the ditch. If necessary, the applicant shall regrade the ditch prior to placing the stone lining so to prevent the stone lining from reducing the ditch's cross-sectional area.

2. Standard for the timely stabilization of disturbed slopes -- The applicant shall construct and stabilize stone-covered slopes by November 15. The applicant shall seed and mulch all slopes to be vegetated by September 1. The department shall consider any area having a grade greater than 15% to be a slope. If the applicant fails to stabilize any slope to be vegetated by September 1, then the applicant shall take one of the following actions to stabilize the slope for late fall and winter.

Job No. 3236.01 October 2017 TZ Properties, LLC Basic Standards Page 9 Orchard Road Subdivision Cumberland, Maine Subdivision Application <u>Stabilize the soil with temporary vegetation and erosion control mats</u> -- By September I the applicant shall seed the disturbed slope with winter rye at a seeding rate of 3 pounds per 1,000 square feet and apply erosion control mats over the mulched slope. The applicant shall monitor growth of the rye over the next 30 days. If the rye fails to grow at least three inches or cover at least 75% of the disturbed slope by November I, then the applicant shall cover the slope with a layer of woodwaste compost as described in item iii of this standard or with stone riprap as described in item iv of this standard.

<u>Stabilize the slope with sod</u> -- The applicant shall stabilize the disturbed slope with properly installed sod by September 1. Proper installation includes the applicant pinning the sod onto the slope with wire pins, rolling the sod to guarantee contact between the sod and underlying soil, and watering the sod to promote root growth into the disturbed soil. The applicant shall not use late-season sod installation to stabilize slopes having a grade greater than 33% (3H:IV).

<u>Stabilize the slope with woodwaste compost</u> -- The applicant shall place a six-inch layer of woodwaste compost on the slope by November 15. Prior to placing the woodwaste compost, the applicant shall remove any snow accumulation on the disturbed slope. The applicant shall not use woodwaste compost to stabilize slopes having grades greater than 50% (2H:IV) or having groundwater seeps on the slope face.

<u>Stabilize the slope with stone riprap</u> -- The applicant shall place a layer of stone riprap on the slope by November 15. The applicant shall hire a registered professional engineer to determine the stone size needed for stability and to design a filter layer for underneath the riprap.

3. Standard for the timely stabilization of disturbed soils -- By September 15 the applicant shall seed and mulch all disturbed soils on areas having a slope less than 15%. If the applicant fails to stabilize these soils by this date, then the applicant shall take one of the following actions to stabilize the soil for late fall and winter.

<u>Stabilize the soil with temporary vegetation</u> -- By September I the applicant shall seed the disturbed soil with winter rye at a seeding rate of 3 pounds per 1000 square feet, lightly mulch the seeded soil with hay or straw at 75 pounds per 1000 square feet, and anchor the mulch with plastic netting. The applicant shall monitor growth of the rye over the next 30 days. If the rye fails to grow at least three inches or cover at least 75% of the disturbed soil before November I, then the applicant shall mulch the area for over-winter protection as described below.

<u>Stabilize the soil with sod</u> -- The applicant shall stabilize the disturbed soil with properly installed sod by September 15. Proper installation includes the applicant pinning the sod onto the soil with wire pins, rolling the sod to guarantee contact between the sod and underlying soil, and watering the sod to promote root growth into the disturbed soil.

<u>Stabilize the soil with mulch</u> -- By November 15 the applicant shall mulch the disturbed soil by spreading hay or straw at a rate of at least 150 pounds per 1000 square feet on the area so that no soil is visible through the mulch. Prior to applying the mulch, the applicant shall remove any snow accumulation on the disturbed area. Immediately after applying the mulch, the applicant will anchor the mulch with plastic netting to prevent wind from moving the mulch off the disturbed soil.

Basic Standards Page 10

I.8 Maintenance of facilities

The stormwater facilities will be maintained by the Applicant, TZ Properties, LLC or their assigned heirs. The contract documents will require the contractor to designate a person responsible for maintenance of the sedimentation control features during construction as required by the Erosion Control Report. Long-term operation/maintenance recommended for the stormwater facilities is presented below.

The responsible party may contract with such professionals, as may be necessary in order to comply with this provision and may rely on the advice of such professionals in carrying out its duty hereunder, provided, that the following operation and maintenance procedures are hereby established as a minimum for compliance with this section. A maintenance log of the inspections shall be kept by the responsible party.

Inspection and Maintenance Frequency and Corrective Measures:

The following areas, facilities, and measures will be inspected and the identified deficiencies will be corrected. Clean-out must include the removal and legal disposal of any accumulated sediments and debris.

Catch Basins:

Inspect catch basins 2 times per year (preferably in Spring and Fall) to ensure that the catch basins are working in their intended fashion and that they are free of debris. Clean structures when sediment depths reach 12" from invert of outlet. If the basin outlet is designed with a hood to trap floatable materials (i.e. Snout), check to ensure watertight seal is working. At a minimum, remove floating debris and hydrocarbons at the time of the inspection.

Culverts:

Inspect culverts 2 times per year (preferably in Spring and Fall) to ensure that the culverts are working in their intended fashion and that they are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit and repair any erosion damage at the culvert's inlet and outlet.

Inlet/Outlet Control Structures:

Inspect structures and piping 2 times per year (preferably in Spring and Fall) to ensure that the structures are working in their intended fashion and that they are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris within the structure.

Stormdrain Outlets:

Inspect outlets 2 times per year (preferably in Spring and Fall) to ensure that the outlets are working in their intended fashion and that they are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris at the outlet and within the conduit Repair any erosion damage at the stormdrain outlet.

Soil Filter – Bio-Filtration:

Inspect all upstream pre-treatment measures 2 times per year (preferably in Spring and Fall) for sediment and floatables accumulation. Remove and dispose of any sediments or debris.

Basic Standards Page II Orchard Road Subdivision Cumberland, Maine Subdivision Application

Surface (Underdrain Pond, Swale or Bio-Filter):

The soil filter will be inspected within the first three months after construction; thereafter the filter will be inspected 2 times per year (preferably in Spring and Fall) to ensure that the filter is draining within 24 to 48 hours of a rain event equivalent to 1" or more. Adjustments will be made to the outlet valve to ensure that the grassed underdrained soil filter drains within 24 to 48 hours. Failure to drain in 72 hours will require part or all of the soil filter media to be removed and replaced with new material meeting the soil filter gradation. The facilities will be inspected after major storms and any identified deficiencies will be corrected. Harvesting and weeding of excessive growth shall be performed as needed. Inspect for unwanted or invasive plants and remove as necessary.

Vegetated Areas:

Inspect slopes and embankments early in the growing season to identify active or potential erosion problems. Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows. The facilities will be inspected after major storms and any identified deficiencies will be corrected.

Ditches, Swales and other Open Stormwater Channels:

Inspect 2 times per year (preferably in Spring and Fall) to ensure they are working in their intended fashion and that they are free of sediment and debris. Remove any obstructions to flow, including accumulated sediments and debris and vegetated growth. Repair any erosion of the ditch lining. Vegetated ditches will be mowed at least annually or otherwise maintained to control the growth of woody vegetation and maintain flow capacity. Any woody vegetation growing through riprap linings must also be removed. Repair any slumping side slopes as soon as practicable. If the ditch has a riprap lining, replace riprap on areas where any underlying filter fabric or underdrain gravel is showing through the stone or where stones have dislodged. Correct any erosion of the channel's bottom or sideslopes. The facilities shall be inspected after major storms and any identified deficiencies shall be corrected.

Roadways and Parking Surfaces: Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring. Accumulations on pavement may be removed by pavement sweeping. Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader. Repair potholes and other roadway obstructions and hazards. Plowing and sanding of paved areas shall be performed as necessary to maintain vehicular traffic safety.

Recertification

As part of the Stormwater Permit, the applicant is required to meet the standards in Appendix B of the Chapter 500 Rules. Appendix B states that a project must submit a certification of the following to the department within three months of the expiration of each five-year interval from the date of issuance of the permit.

- (a) Identification and repair of erosion problems. All areas of the project site have been inspected for areas of erosion, and appropriate steps have been taken to permanently stabilize these areas.
- (b) Inspection and repair of stormwater control system. All aspects of the stormwater control system have been inspected for damage, wear, and malfunction, and appropriate steps have been taken to repair or replace the system, or portions of the system.

Job No. 3236.01 October 2017 TZ Properties, LLC Basic Standards Page 12 Orchard Road Subdivision Cumberland, Maine Subdivision Application

- (c) Maintenance. The erosion and stormwater maintenance plan for the site is being implemented as written, or modifications to the plan have been submitted to and approved by the department, and the maintenance log is being maintained.
- (d) Proprietary Systems. All proprietary systems have been maintained according to the manufacturer's recommendations. Where required by the Department, the permittee shall execute a 5-year maintenance contract with a qualified professional for the coming 5-year interval. The maintenance contract must include provisions for routine inspections, cleaning, and general maintenance.

Housekeeping

As part of the Stormwater Permit, the applicant is required to meet the standards in Appendix C of the Chapter 500 Rules. The following procedures are hereby established as a minimum for compliance with this section. For further information on the procedures listed below, refer to Chapter 500 rules – Appendix C.

Spill Prevention:

Appropriate spill prevention, containment, and response planning/implementation shall be used to prevent pollutants from being discharged from materials on site.

Groundwater Protection:

During construction, hazardous materials with the potential to contaminate groundwater shall not be stored or handled in areas of the site which drain to an infiltration area.

Fugitive Sediment and Dust:

Appropriate measures shall be taken to ensure that activities do not result in noticeable erosion of the soils and water and/or calcium chloride shall be used to ensure that activities do not result in fugitive dust emissions during or after construction.

Debris and Other Materials:

Litter, construction debris, and chemicals exposed to stormwater must be prevented from becoming a pollutant source.

Trench or Foundation De-watering:

Water collected through the process of trenching and/or de-watering must be removed from the ponded area, and must be spread through natural wooded buffers or other areas that are specifically designed to collect the maximum amount of sediment possible.

Non-stormwater Discharges:

Identify and prevent contamination by non-stormwater discharges.

Conclusion

The Applicant has provided temporary and permanent erosion control measures as well as specifying a sequence of construction as measures to minimize erosion and sedimentation.

Attachments

Attachment A	-	Seeding Plan
Attachment B	-	Inspection Report

Job No. 3236.01 October 2017 TZ Properties, LLC

Basic Standards Page 14 Orchard Road Subdivision Cumberland, Maine Subdivision Application

ATTACHMENT A

SEEDING PLAN

SEEDING PLAN

Pro	oject: Orchard Road Subdivision				
<u>Site</u>	Site Location: Orchard Road, Cumberland, ME				
	Permanent Seeding T	emporary Seeding			
1.	Instruction on preparation of soil: Prepare a go	· · ·	od used.		
2.	Apply lime as follows:# / acres, OR 13	<u>38 </u> # /M Sq. Ft.			
3.	Fertilize with pounds of N-P-K/ac. OR <u>13.8</u> pounds of <u>10-10-10</u> N-P-K/M Sq. Ft.				
4.	Method of applying lime and fertilizer: Spread and work into the soil before seeding.				
5.	Seed with the following mixture:				
	50% Winter Rye				
	50% Annual Rye				
6.	5. Mulching instructions: Apply at the rate of per acre, OR <u>75 pounds per M. Sq. Ft.</u>				
		Amount	Unit # Tons. Etc.		
7.	TOTAL LIME	138	#/1000 sq. ft.		
8.	TOTAL FERTILIZER	13.8	#/1000 sq. ft.		
9.	TOTAL SEED	1.03	#/1000 sq. ft.		
10.	TOTAL MULCH	75	#/1000 sq. ft.		
11.	11. TOTAL other materials, seeds, etc.				
12.	12. REMARKS				

Spring seeding is recommended; however, late summer (prior to September 1) seeding can be made. <u>Permanent</u> seeding should be made prior to August 5 or as a dormant seeding after the first killing frost and before the first snowfall. If seeding cannot be done within these seeding dates, temporary seeding and mulching shall be used to protect the site. Permanent seeding shall be delayed until the next recommended seeding period.

SEEDING PLAN

Project: Orchard Road Subdivision				
Site Location: Orchard Road, Cumberland, ME				
\boxtimes	Permanent Seeding	Temporary Seeding		
1.	Instruction on preparation of soil: Prepare a	good seed bed for planting meth	od used	
2.			où usea.	
2. 3.	Apply lime as follows:# / acres, OR <u>138</u> # /M Sq. Ft.			
<i>3</i> . 4.	Fertilize with pounds of N-P-K/ac. OR <u>18.4</u> pounds of <u>10-20-20</u> N-P-K/M Sq. Ft.			
5.	Seed with the following mixture:			
	40% Creeping Red Fescue			
	30% Charger II Perennial Ryegrass			
	20% KenBlue Kentucky Bluegrass			
	10% Tiffany Chewings Fescue			
6.	Mulching instructions: Apply at the rate ofper acre, OR 75 pounds per M. Sq. Ft.			
		Amount	Unit # Tons. Etc.	
7.	TOTAL LIME	138	#/1000 sq. ft.	
8.	TOTAL FERTILIZER	18.4	#/1000 sq. ft.	
9.	TOTAL SEED	1.03	#/1000 sq. ft.	
10.	. TOTAL MULCH 75 #/1000 sq. ft.			
11.	1. TOTAL other materials, seeds, etc.			
12.	2. REMARKS			

Spring seeding is recommended, however, late summer (prior to September 1) seeding can be made. <u>Permanent</u> seeding should be made prior to August 5 or as a dormant seeding after the first killing frost and before the first snowfall. If seeding cannot be done within these seeding dates, temporary seeding and mulching shall be used to protect the site. Permanent seeding shall be delayed until the next recommended seeding period.

ATTACHMENT B

INSPECTION REPORT

•

STORMWATER POLLUTION PREVENTION PLAN

INSPECTION REPORT

PROJECT INFORMATION

Project Name:	Orchard Road Subdivision
Address:	Orchard Road Cumberland, Maine
CONTRACTOR/SUI	BCONTRACTOR INFORMATION
Inspector Name:	
Firm:	
Title:	
Qualifications:	
INSPECTION SUM	MARY
Date of Inspection:	
Major Observations: -	

THE FACILITY IS IN COMPLIANCE WITH THE STORMWATER POLLUTION PREVENTION PLAN WITH THE FOLLOWING EXCEPTIONS:

ACTIONS NECESSARY TO BRING FACILITY INTO COMPLIANCE:

REQUIRED MODIFICATIONS TO STORMWATER POLLUTION PREVENTION PLAN (MUST BE IMPLEMENTED WITHIN 7 DAYS OF INSPECTION):

CERTIFICATION STATEMENT:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the systems, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Signature

Typed Name

Title

Date

TRC 6 Ashley Drive Scarborough, ME 04074

Main 207-879-1930 Fax 207-879-9293

Memorandum

То:	Will Haskell, Gorrill-Palmer
From:	Lauren Leclerc
Subject:	Ward Farm Property: Wetland, Stream and Vernal Pool Survey – Cumberland
Date:	May 24, 2017
CC:	Rich Jordan and David Brenneman (TRC)

Dear Will,

On May 3rd and 4th, 2017, I visited the Ward Farm property located south of Orchard Road, in Cumberland, Maine. The purpose of my site visit was to delineate wetlands, streams, and vernal pools on the property. A third site visit was conducted on May 10, 2017 for a second vernal pool check. Below I will detail the methods and findings of my recent resources delineation.

Property Description and Survey Area

The entire property is approximately 27 acres. The northwestern portion of the property is relatively flat while there is a valley with a wetland, stream and vernal pool located in the northeastern corner of the property. The topography of the central portion of the site slopes slightly to the southeast while the topography of the southern portion of the site slopes to the south. Uplands onsite are dominated by northern red oak (*Quercus rubra*), eastern white pine (*Pinus strobus*), quaking aspen (*Populus tremuloides*), American beech (*Fagus grandifolia*), and Canada mayflower (*Maianthemum canadense*). A small pine plantation is located in the southcentral portion of the site, near the southern property boundary. Wetlands are interspersed throughout the site, except within the southwestern corner which is comprised of upland. The property has been logged in the past and forestry trails can be found throughout the site. The entire property was surveyed for wetlands, waterbodies, and vernal pools. A map depicting the limits of my resources survey, which includes the natural resources identified is attached to this memo.

Methodology

To identify natural resources within the property boundary, I visited the study area on May 3rd and 4th, 2017. Prior to the site visit, I reviewed existing data sources including:

- United States Geological Survey (USGS) topographic mapping;
- United States Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) mapping;
- Natural Resources Conservation Service (NRCS) medium-intensity soil survey mapping;
- Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRMs);

- State of Maine Office of GIS (MEGIS) data; and
- Recent and historic aerial photography.

These data were used to assist in the identification of protected natural resources during my field survey.

Wetlands: Wetland delineations were conducted in accordance with the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region, v2 (U.S. Army Corps of Engineers [USACE] 2012). This supplement follows criteria established in the USACE Wetlands Delineation Manual (Environmental Laboratory, Technical Report T-87-1, 1987), but is region specific, giving the wetland delineator a better tool to apply to regional vegetation communities, indicators of hydrology and indicators of hydric soils when conducting a wetland boundary determination. This document provides a repeatable methodology to identify potential wetland areas.

The study area was investigated on foot. When a location having the requisite three factors that constitute a wetland (i.e., hydrophytic vegetation, indicators of hydrology, and the presence of hydric soils) was encountered, the boundaries were flagged in the field and each flag was geo-located using a mapping grade global positioning system (GPS) unit (Trimble GeoXT). The data was then post-processed using data collection and processing standards designed by the manufacturer to achieve sub-meter accuracy. These data were provided to Gorrill-Palmer for use in project design and planning natural resource avoidance and minimization measures.

Streams: Watercourse identification followed the Maine Natural Resources Protection Act (NRPA) definition of a "River, stream or brook." Streams meeting this definition were flagged and geolocated as described in the wetlands section.

Vernal Pools: The study area was also surveyed for the presence of vernal pools. Wetlands that contain natural vernal pool habitat and exhibit a high level of breeding productivity are considered Significant Wildlife Habitat under the Maine NRPA. Under the USACE's Maine General Permit, vernal pool habitats of natural or anthropogenic origin of any level of functionality may require a higher level of project review depending upon the scope of a project and its proposed impacts. Our field study was performed within the breeding season of vernal pool indicator species (e.g., wood frogs (*Lithobates sylvatica*) and spotted salamanders [*Ambystoma maculatum*]). Thus, a vernal pool (VP) survey was conducted pursuant to the Maine Association of Wetland Scientists' (MAWS) Vernal Pool Survey Protocol (April 2014) description of "breeding season surveys." TRC's wetland scientist performed the survey within the study area based on current state and federal definitions, as well as looking for indicators such as topographic changes (including isolated depressions with a sparsely vegetated bottom), ecological use, standing water or evidence thereof, evidence of secondary indicator species (e.g., caddisfly larvae cases, fingernail clam shells, aquatic snail shells) and best professional judgment.

Findings

My survey identified seven wetlands, one perennial stream, and two natural, non-significant vernal pools on the property.

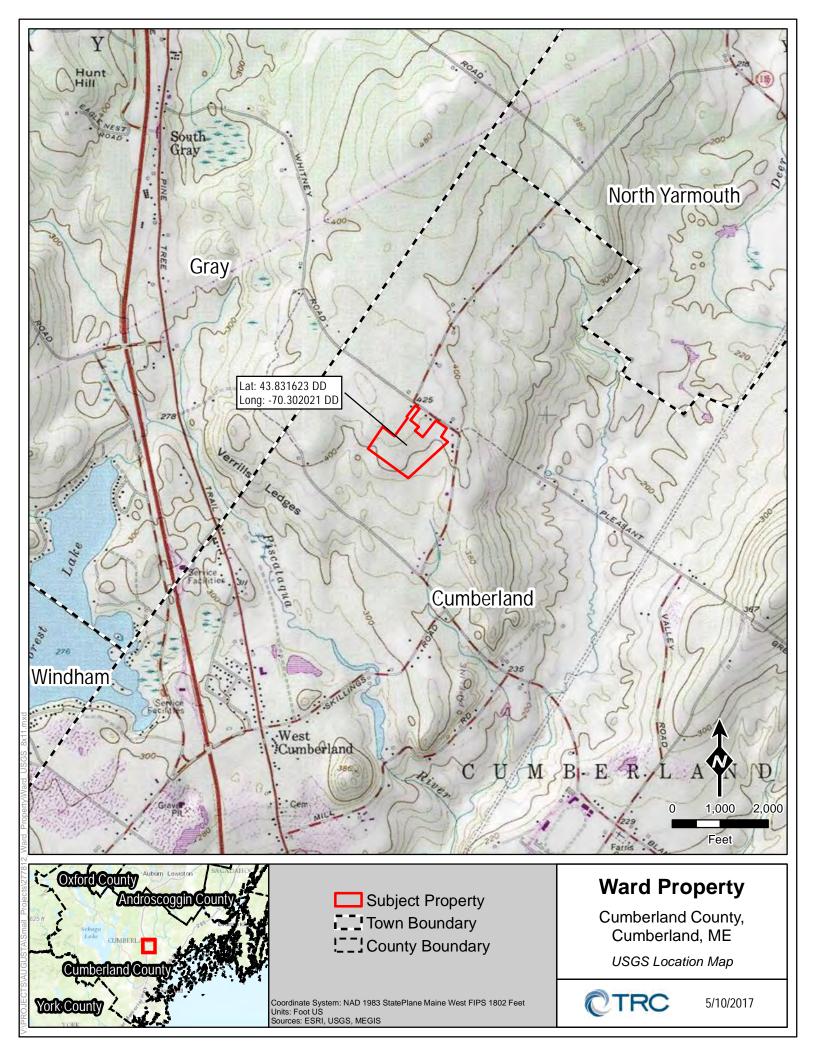
Attached you will find copies of the completed wetland summary and USACE data forms, Maine State Vernal Pool Assessment Forms, and a photographic log from my site visit. GIS shapefiles showing the location of the delineated resources were previously provided to you via email on May 10, 2017. The unique identifiers noted on the data forms can be crossed referenced against the data herein and the resources map to see where a particular resource is located. I have included summary tables below that outline the delineated resources.

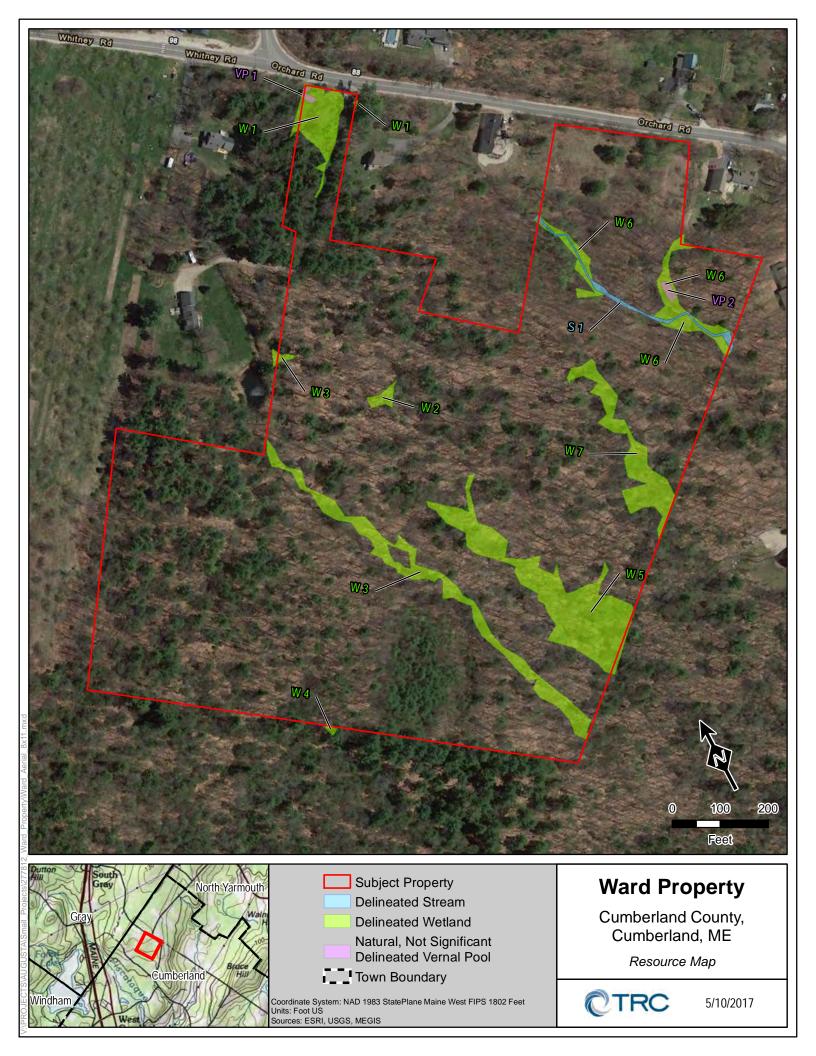
	RE	SOURCE SUMMARY TABLES		
WETLANDS				
Resource ID	Covertype ¹	Dominant Vegetation	Comments	
Wetland W 1	PFO1/4E	Red maple (<i>Acer rubrum</i>), eastern hemlock (<i>Tsuga canadensis</i>), quaking aspen, American beech, winterberry (<i>Ilex verticillata</i>), Canada mayflower	Pit and mound forested wetland which contains natural, non-significant vernal pool VP 1.	
Wetland W 2	PFO1B	Red maple, quaking aspen, eastern hemlock, broad-leaf meadow sweet (<i>Spiraea latifolia</i>), red osier (<i>Cornus alba</i>), interrupted fern (<i>Osmunda</i> <i>claytoniana</i>)	Small isolated forested wetland.	
Wetland W 3	PFO1E	Red maple, eastern white pine, yellow birch (<i>Betula alleghaniensis</i>)	Forested wetland swale fed by offsite pond.	
Wetland W 4	PFO1B	Red maple, ash species (<i>Fraxinus</i> sp.), eastern hemlock	Headwaters of seep at property boundary.	
Wetland W 5	PFO1E	Red maple, black ash (<i>Fraxinus nigra),</i> yellow birch, American beech, Canada mayflower, interrupted fern	Pit and mound forested wetland.	
Wetland W 6	PEM1E/PFO1E	Red maple, meadowsweet, winterberry, sensitive fern (<i>Onoclea</i> <i>sensibilis)</i>	Emergent/forested wetland swale associated with perennial stream S 1 and natural, non-significant VP 2.	
Wetland W 7	PFO1E	Red maple, yellow birch, quaking aspen, ash species, eastern hemlock, white pine, Canada mayflower, cinnamon fern (<i>Osmundastrum</i> <i>cinnamomeum)</i>	Pit and mound forested wetland.	
¹ Per Cowardin et. al.				

STREAMS					
Resource ID	Flow Regime	Width (ft.)	Depth (in.)	Substrate	Comments
Stream S 1	Perennial	5-8	1-4	Sand, gravel, cobble	Unnamed tributary.

Thank you for allowing me to assist you in assessing the natural resources on this property. If you have any questions regarding my assessments, or if you would like additional assistance with project permitting, please do not hesitate to contact me or Rich.

Respectfully submitted,


Lawren J. Jeclere


Lauren Leclerc, PWS (#2363) Wetland Scientist

Cell: 207-756-9322 Office: 207-620-3857 Email: lleclerc@trcsolutions.com

ATTACHMENT A

Resource Mapping

ATTACHMENT B

Photographic Log

Wetland W 1: Looking northwest at forested wetland adjacent to driveway and Orchard Road, 05/03/2017.

Wetland W 1 and Vernal Pool VP 1: Looking northwest at forested wetland and natural, non-significant vernal pool south of Orchard Road, 05/03/2017.

Vernal Pool VP 1: Spotted salamander egg mass within VP 1, 05/03/2017.

Wetland W 2: Looking west across the forested wetland, 05/03/2017.

Wetland W 3: Looking south along the wetland swale which runs north-south across the southern extents of the property, 05/03/2017.

Wetland W 3: Looking north along the wetland swale which runs north-south across the southern extents of the property, 05/04/2017.

Wetland W 4: Headwaters of forested wetland seep at southern property boundary, looking south, 05/04/2017.

Wetland W 5: Looking southeast from the northern end of the forested wetland, slightly downslope, 05/04/2017.

Wetland W 5: Looking east at windthrows in forested wetland, near eastern property boundary, 05/04/2017.

Wetland W 6 and Stream S 1: Emergent component of wetland and associated Stream S 1 looking south and downstream, 05/04/2017.

Wetland W 6 and Vernal Pool VP 2: Looking north at forested wetland and natural, non-significant VP 2, 05/04/2017.

Vernal Pool VP 2: Spotted salamander egg mass within VP 2, 05/04/2017.

Wetland W 7: Looking north at forested wetland and seep, 05/04/2017.

Upland: Looking northeast at forested upland to the northeast of Wetland W 3, 05/04/2017.

Upland: Looking southwest at forested upland to the south of Wetland W 2, 05/03/2017.

ATTACHMENT C

Wetland Summary and Wetland Data Forms

Observers:	 ,[ederc		ND SUMMAR $5-4$	-17
Corps plot:	Yes	X No	Feat	ire ID	1
REVISIT?	Yes	X No If Y	es, any changes? ?	Yes	No. If yes, Explain:
Dominant N	WI Class:	PENIA	F Other NWI	Classes:	
Representat	ive/Dominal	nt Wetland Veg	etation by Strata		
Tree (ub	Saplin	s h	Shrub	Herb L	Vines
Tsy car	A	erub	TSUCA	5 170	lican NA
) and ca			Ileve		
Poptre		4999	Acen	e L	
1429	(A.	Hydrology			
Represental Peri	ive Wetland nanently Flo	Hydrology oded	V Seasonally Floor	led 🔨 🗙	Saturated
(approxim	ute depth -) (a	Seasonally Floor	}	
Understand - T	ndicator	K c		ninad Lanuar	Sediment Deposits Lines; Elevated Roo 7 ```````````````````````````````````
Hydroiogic I Spars	ndicators:	Concave Surface	ater; <u>vater St</u> water Mar	ainea Leaves; ks: Drift	Sediment Deposits
Surfa	ce Scouring;	Drainag	c Patterns;	Buttressed Trees;	Elevated Roo
Moss	Trim Lines	Sat	tosugo	C2.	
Other Observ	ations:	lligh w	in table	win à	7" immed
Soils		<u> </u>			
Depth	Horizon	Matrix	Redox Features	Texture	Notes
(inches)		Color	Color / Percent		
0-7-	Oi.	black			
7-11	R	104R412	VANA K-5	177	Warmel
7-11	B	104R4/2	104R4/6-5	FSL	wlgravel
7-11	B	104R4/2	104R4 6-5	FSL	wlgavel
7-11	B	10484/2	104R4/6-5	FSL	wlgavel
7-11	B	104R4/2	164R4 6-5	FSL	w/Javel
7-11	B			FSL	wlgavel
Representati Other Obser			16 YR4 /6-5 alOrganic	FSL	wlgavel
Other Obser	vations:	ils: <u>*</u> Miner	alOrganic		
Other Obser	vations:	ils: <u>*</u> Miner	alOrganic		
Other Obser Stream # 1 1 Width (Ton-	vations: Name:	ils: <u>X</u> Miner	alOrganic	Perenníal	Intermittent
Other Obser Stream # 1 ! Width (Ton-	vations: Name:	ils: <u>X</u> Miner	alOrganic	Perenníal	Intermittent
Other Obser Stream # 1 1 Width (Top- Bank Config Channel Sub Stream # 1 1	vations: Name:	nils: X Miner MA -of-Bank): Undercut eat-MuckSi	alOrganic Organic Organic Organic Organic Organic Organic	Perenníal dual Gravel/Cobble	Intermittent Boulder Bedroci
Other Obser Stream # 11 Width (Top- Bank Config Channel Sub Stream # 21 Width (Ton-	vations: Name: of-Bank-Top uration: strate: Pame: of-Bank-Tor	ils: <u>X</u> Miner -of-Bank): Undercut eat-MuckSi -of-Bank):	alOrganic _Depth @ Center: VerticalGra It-MudSand Depth @ Center:	Perenníal dual Gravel/Cobble Perenníal	Intermittent Boulder Bedrocl
Other Obser Stream # 11 Width (Top- Bank Config Channel Sub Stream # 21 Width (Ton-	vations: Name: of-Bank-Top uration: strate: Pame: of-Bank-Tor	ils: <u>X</u> Miner -of-Bank): Undercut eat-MuckSi -of-Bank):	alOrganic _Depth @ Center: VerticalGra It-MudSand Depth @ Center:	Perenníal dual Gravel/Cobble Perenníal	Intermittent Boulder Bedrocl
Other Obser Stream # 1 1 Width (Top- Bank Config Channel Sub Stream # 2 1 Width (Top- Bank Config Channel Sub	vations: of-Bank-Top uration: strate:P Name: of-Bank-Top uration: strate:	ils: <u>X</u> Miner -of-Bank): Undercut eat-Muck Si -of-Bank): Undercut eat-Muck Si	alOrganic Organic VerticalGra It-MudSand Depth @ Center: VerticalGra It-MudSand	Perenníal dual Gravel/Cobble Perenníal dual Gravel/Cobble	Intermittent Boulder Bedrocl Intermittent BoulderBedrocl
Other Obser Stream # 1 I Width (Top- Bank Config Channel Sub Width (Top- Bank Config Channel Sub Width (Top- Bank Config Channel Sub	vations: of-Bank-Top uration:P vame:P vame:P uration: strate:P servations/S	ils: <u>X</u> Miner -of-Bank): Undercut eat-Muck Si -of-Bank): Undercut eat-Muck Si	alOrganic Organic VerticalGra It-MudSand Depth @ Center: VerticalGra It-MudSand	Perenníal dual Gravel/Cobble Perenníal dual Gravel/Cobble	Intermittent Boulder Bedrocl Intermittent BoulderBedrocl
Other Obser Stream # 1 1 Width (Top- Bank Config Channel Sub Stream # 2 1 Width (Top- Bank Config Channel Sub	vations: of-Bank-Top uration:P vame:P vame:P uration: strate:P servations/S	ils: <u>X</u> Miner -of-Bank): Undercut eat-Muck Si -of-Bank): Undercut eat-Muck Si	alOrganic Organic VerticalGra It-MudSand Depth @ Center: VerticalGra It-MudSand	Perenníal dual Gravel/Cobble Perenníal dual Gravel/Cobble	Intermittent Boulder Bedroel Intermittent Boulder Bedroel
Other Obser Stream # 11 Width (Top- Bank Config Channel Sub Stream # 21 Width (Top- Bank Config Channel Sub Wildlife Ob Stream Sub Wildlife Ob Stream Sub Wildlife Ob	vations: Name: of-Bank-Top uration: strate: of-Bank-Top varation: strate: strate: strate: S S S	ils: _/Miner -of-Bank): Undercut eat-MuckSi -of-Bank): Undercut eat-MuckSi ign	alOrganic Oepth @ Center: VerticalGra t-MudSand VerticalGra t-MudSandGra	Perenníal dual Gravel/Cobble Perenníal dual Gravel/Cobble	Intermittent Boulder Bedroel Intermittent Boulder Bedroel
Other Obser Stream # 11 Width (Top- Bank Config Channel Sub Stream # 21 Width (Top- Bank Config Channel Sub Wildlife Ob Schamel Sub	vations: Name: of-Bank-Top uration: strate: of-Bank-Top varation: strate: strate: strate: S S S	ils: <u>X</u> Miner -of-Bank): Undercut eat-Muck Si -of-Bank): Undercut eat-Muck Si	alOrganic Oepth @ Center: VerticalGra t-MudSand VerticalGra t-MudSandGra	Perenníal dual Gravel/Cobble Perenníal dual Gravel/Cobble	Intermittent Boulder Bedroct Intermittent Boulder Bedroct PO-SSErrie
Other Obser Stream # 11 Width (Top- Bank Config Channel Sub Stream # 21 Width (Top- Bank Config Channel Sub Wildlife Ob Stream Sub Wildlife Ob Stream Sub Wildlife Ob	vations: Name: of-Bank-Top uration: strate: of-Bank-Top varation: strate: strate: strate: S S S	ils: _/Miner -of-Bank): Undercut eat-MuckSi -of-Bank): Undercut eat-MuckSi ign	alOrganic Oepth @ Center: VerticalGra t-MudSand VerticalGra t-MudSandGra	Perenníal dual Gravel/Cobble Perenníal dual Gravel/Cobble ~\$\$\$\$\$,	Intermittent Boulder Bedroel Intermittent Boulder Bedroel

	WETLAND DETERMINATIO	N DATA FOR	M – Northcentral a	nd Northeast Region
	Project/Site: Ward Farm Parcel	City/C	ounty: <u>Cumber</u>	cland sampling Date: 5-3-1=
	Applicant/Owner: Gorcill- Palmer		-	State: <u>HE</u> Sampling Point: <u>¥</u> <u>2</u>
	Investigator(s): L. Leclesc	Sectio	n, Township, Range:	·••
	Landform (hillislope, terrace, etc.): Stat area			e): Slightly Court Slope (%): 0.50
			-	03003181 Datum: WG5 198
	Soli Map Unit Name:		1	
	Are climatic / hydrologic conditions on the site typical for this			
	Are Vegetation, Soil, or Hydrologys			
	Are Vegetation, Soll, or Hydrology n	aturally problema	tic? ND (It needed, et	xplain any answers in Remarks.)
	SUMMARY OF FINDINGS – Attach site map	showing sam	pling point locatio	ns, transects, important features, etc.
4 4 2	Hydrophytic Vegetation Present? Yes N	o	is the Sampled Area	
	Hýdric Soil Present? Yes X N	0	within a Wetland?	Yes X No
	Wetland Hydrology Present? Yes X N	o	If yes, optional Wetland	Site ID:Z
	Remarks: (Explain alternative procedures here or in a ser	arato conort)		- 1
	styph depression in J	at upla	nd landsc	ape
		-		м. м.
				200 <u>-</u>
				the second s
	HYDROLOGY			
	Wetland Hydrology Indicators:	<u>.</u>		Secondary Indicators (minimum of two required)
	Primary Indicators (minimum of one is required; check all t	hat apply)		Surface Soil Cracks (B6)
		er-Stained Leaves		Drainage Patterns (B10)
		atic Fauna (B13)		Moss Trim Lines (B16)
	A Constant and the second s	Deposits (B15)	and the second sec	Dry-Season Water Table (C2)
	36.047.662.04	rogen Sulfide Odo	1. S. S. S. S.	Crayfish Burrows (C8)
		양양 방송 방송 방송 방송 방송 방송 방송 방송 방송 가지 않는 것을 많은 것을 했다.	is on Living Roots (C3)	Saturation Visible on Aerial Imagery (C9)
		sence of Reduced	n in Tilled Soils (C6)	Stunted or Stressed Plants (D1)
		Muck Surface (C	New York Williams	Shellow Aquitard (D3)
		ar (Explain in Rem	이것 않았는데 이상 이상에 있는 것이 가지 않는 것이야.	Microtopographic Relief (D4)
	Sparsely Vegetated Concave Surface (B8)			FAC-Neutral Test (D5)
	Field Observations:		and the second se	
	Surface Water Present? Yes No X_ De	pth (inches):		
		pth (inches): To 3	surface	
	Saturation Present? Yes X No De	oth (inches): +to:	Sucha De Wetland H	ydrology Present? Yes 📈 No
	(includes capillary fringe)	and the second sec	-	
	Describe Recorded Data (stream gauge, monitoring well, i	tenai priotos, prev	vious inspections), ir avai	Iadie:
			No.	N. Contraction of the second sec
	Remarks:	1. A.,	en se	
	X.			

VEGETATION - Use scientific names of plants.				Sampling Point:
Tree Stratum (Plot size: 15)	Absolute % Cover	Dominant Species?		Dominance Test worksheet:
1. Populus tremuloides	30	X	FACU	Number of Dominant Species 4 (A)
2. Acès nubrum 3		<u> </u>	FAC	Total Number of Dominant Species Across All Strata:(B)
4 5				Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
6				Prevalence index worksheet:
7			·	Total % Cover of: Multiply by:
1	<u>a</u>	= Total Cov	rer	OBL species x 1 =
Sapling/Shrub Stratum (Plot size: 15)	ŧ	v	**************************************	FACW species x 2 =
1. Tsuga canadensis	10	<u> </u>	FACU	FAC species x3 =
2. Spiraea latisatia	10	<u> </u>	FACh	FACU species x 4 = UPL species x 5 =
3. Cornus alba	5	X	FACW	UPL species x 5 = Column Totals: (A) (B)
4		·		
5				Prevalence Index = B/A =
6			·	Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8	<u>25</u>	= Total Cov	/er	X 2 - Dominance Test is >50% 3 - Prevalence Index is $\leq 3.0^1$
Herb Stratum (Plot size: <u>5</u>)	70	\sim	54	4 - Morphological Adaptations ¹ (Provide supporting
1. Osmunda claytoniana 2. Maianthemum canadonse				data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain)
3. Carex species				¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
4 5				Definitions of Vegetation Strata:
6			•	Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
8				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
9 10		···		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
11 12				Woody vines – All woody vines greater than 3.28 ft in height.
Woody Vine Stratum (Plot size: 15))		= Total Cov	/er	
1. <u>Noe</u>				Hydrophytic
2				Vegetation Present? Yes No
3				
4		= Total Cov		
Remarks: (Include photo numbers here or on a separate s				
Remarks: (Include photo numbers here or on a separate of Adjusted trees vine Namous wetland	radiu	s to	15'	to account for
narrow wetland				

SOIL		Sampling Poi	nt: 👱 み
Profile Description: (Describe to the de	pth needed to document the indicator or confi	rm the absence of indicators.)	
Depth <u>Matrix</u> (inches) Color (moist) %	<u> Redox Features</u> Color (moist) % Type ¹ Loc ²	Texture Remarks	
	лана — — — — — — — — — — — — — — — — — —	<u>0e</u>	
<u> </u>		<u></u>	
<u>9-12+1072412 950</u>	20104RA/6 590 C M	<u></u>	
đ	1		
	,, _,		
	·		
. · ·	·		
	,		
	. <u></u>		
'Type: C=Concentration, D=Depletion, RN Hydric Soil Indicators:	A=Reduced Matrix, MS=Masked Sand Grains.	² Location: PL=Pore Lining, M=Matri Indicators for Problematic Hydric S	X.
Histosol (A1)	Polyvalue Below Surface (S8) (LRR R,	2 cm Muck (A10) (LRR K, L, MLF	
Histic Epipedon (A2)	MLRA 149B)	Coast Prairie Redox (A16) (LRR I	
Black Histic (A3)	Thin Dark Surface (S9) (LRR R, MLRA 149	B) 5 cm Mucky Peat or Peat (S3) (LI	
Hydrogen Sulfide (A4) Stratified Layers (A5)	Loamy Mucky Mineral (F1) (LRR K, L)	Dark Surface (S7) (LRR K, L, M)	
Depleted Below Dark Surface (A11)	Loamy Gleyed Matrix (F2)	Polyvalue Below Surface (S8) (LF Thin Dark Surface (S9) (LRR K, L	
Thick Dark Surface (A12)	Redox Dark Surface (F6)	Iron-Manganese Masses (F12) (L	
Sandy Mucky Mineral (S1)	Depleted Dark Surface (F7)	Piedmont Floodplain Solls (F19) (
Sandy Gleyed Matrix (S4) Sandy Redox (S5)	Redox Depressions (F8)	Mesic Spodic (TA6) (MLRA 144A Red Parent Material (F21)	., 145, 149B)
Stripped Matrix (S6)		Very Shallow Dark Surface (TF12	1
Dark Surface (S7) (LRR R, MLRA 149	98)	Other (Explain in Remarks)	,
3			
Indicators of hydrophytic vegetation and w Restrictive Layer (if observed):	vetland hydrology must be present, unless disturbe	ed or problematic.	
Type: TOCHY			
Depth (inches): 16"	<u></u>	Hydric Soil Present? Yes 🗡	No
Remarks:			
		*	
52			
8			

A. 2000

ŧ

WETLAND DETERMINATION DATA FOR	M – Northcentral and Northeast Region
Project/Site: Ward Parcel City/C	ounty: Cumberland sampling Date: 5-3-17
Applicant/Owner: Gocall - Palmer	State: <u>ハモ</u> Sampling Point: <u>ひーメ</u> ス
	on, Township, Range:
	ef (concave, convex, none): <u>none</u> Slope (%): <u>0</u>
Subregion (LRR or MLRA):L0LLLat:43.8330517	
	mdy loar NWI classification: Upland
Are climatic / hydrologic conditions on the site typical for this time of year? Y	
Are Vegetation, Soil, or Hydrology significantly distur	
Are Vegetation, Soil, or Hydrology naturally problema	atic? $N D$ (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area within a Wetland? Yes No X
Hydric Soil Present? Yes No 'X Wetland Hydrology Present? Yes X No	
Remarks: (Explain alternative procedures here or in a separate report.)	If yes, optional Wetland Site ID:
upting has many old woods	(oads
obwie und and an access	
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leave	
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
X Saturation (A3) Mart Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Od	
	es on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Algal Mat or Crust (B4) Recent Iron Reductio	
Right Mat Cross (64) Recent from Reduction	
Inundation Visible on Aerial Imagery (B7) Other (Explain in Ren	
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No Depth (inches):	
Water Table Present? Yes X No Depth (inches):	
Saturation Present? Yes X No Depth (inches):	Wetland Hydrology Present? Yes X No
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:
Remarks:	

,

VEGETATION – Use scientific names of plants.

Tree Stratum (Plot size;

301

1 Populus Internet Sides Populonds Internet Sides Populus Internet Sid		1 ~			Number of Dominant Species
3 Accel Cubburn BD X Tack Windberd Dominant Tack Windberd Dominant 4 Sector Tack Windberd Dominant Species Across All Statu: Tack Windberd Dominant 5 Sector Tack Windberd Dominant Species Across All Statu: Tack Windberd Dominant 6 Tack Windberd Dominant Species All Status Tack Windberd Dominant 7 = Total Cover Tack Windberd Dominant Species X 1 = 0 7 = Total Cover Tack Windberd Dominant Species X 1 = 0 7 = Total Cover Tack Windberd Dominant Species X 2 = 0 7 Tack Windberd Dominant Species X 2 = 0 Species X 2 = 0 2 Yunut S Status Tack Windberd Dominant Tack Windberd Dominant Species X 3 = 0 2 Yunut S Status Tack Windberd Dominant Y 1 = 0 FAC species X 3 = 0 3 Fractus Status Y 1 = 0 FAC species X 3 = 0 Y 1 = 0 4 Species Across All Status Y 1 = 0 FAC species X 3 = 0 Y 1 = 0	1. Populus tremuloides	40	<u> </u>	FACU	
4					
s				- the	
2	4		·····	<u> </u>	
7	5				That Are OBL, FACW, of FAC: (A/B)
SamingShub Stratum (Plot size: 15) To = Total Cover 1. EAQ.uss As = 100 2. Provalence Index = B/A = 3.3 (G 3. Column Totals: 14D (A) 540 (B) 4. Provalence Index = B/A = 3.3 (G 7. Hot Species A = 3.3 (G 9. Provalence Index = B/A = 3.3 (G 9. Provalence Index = B/A = 3.3 (G 9. Provalence Index = B/A = 3.3 (G 9. A = 700 (Policial Cover 10. Provalence Index = B/A = 3.3 (G 9. A = 700 (Policial Cover 11. Provalence Index = B/A = 3.3 (G 12. Provalence Index = SO 13. Provalence Index = SO 14. Provalence Index = SO 15. Provalence	6				Prevalence Index worksheet:
Sapaling/Sinda Stratum (Plot size: 15)) 1.5 Y FACW species 2.2 X = 0 2 Yuruuu stratuuu (Plot size: 15) 1.5 Y FACU species 2.0 X = 400 2 Yuruuu stratuuu (Plot size: 15) 1.5 Y FACU species 2.0 X = 400 4 5	7				
Supportion straign (Pion see 20 x 3 = 20 2 Proves Sec 20 x 4 = 740 3 Sec Sec Column Totals: 140 (A) 540 4 Sec Sec Column Totals: 140 (A) 540 (B) 5 Sec Sec Sec Column Totals: 140 (A) 540 (B) 6 Tespecies Q.x 3 = Q.X 4 = Tespecies Q.x 5 = Column Totals: 140 (A) 540 (B) 6 Tespecies Q.x 5 = Tespecies Q.x 5 = Column Totals: 140 (A) 540 (B) 7 Tespecies Q.x 5 = Tespecies Q.x 5 = (B) Provalence Index = B/A = 3.3 C 8 Second Max Elso Second Max E		10	= Total Co	ver	
2 A FACU species A A 3 A A A A A 4 Column Totals: A A A A A 5 A				_	
2	1. Fagus grandifolia	<u>_25</u>	_X_		FAC species $\frac{100}{100} \times 3 = \frac{100}{400}$
3.	2. Pinus strobus	<u> 15 </u>	<u> </u>	<u>FACU</u>	
4					Column Totals: 140 (A) 540 (B)
6					
7	5	a 			Prevalence Index = B/A = 3.86
7.	6				Hydrophytic Vegetation Indicators:
40 = Total Cover					
Herb Stratum (Plot size:		40	= Total Co	ver	
1	Herb Stratum (Plot size: 5)				
2 Poly stephenic Hydrophylic Vegetation' (Explain) 3 Maiar thermum cane dorse 5 4		10	\times	FACU	
3 MaiarAthomum Care dorse S IAu 'Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 4	2 Policationarrostichoides	5	X	TACO	Problematic Hydrophytic Vegetation ¹ (Explain)
4		-5	$\overline{\times}$	TAC	Indicators of hydric soil and wetland hydrology must
S					be present, unless disturbed or problematic.
6.					Definitions of Vegetation Strata:
7					Tree – Woody plants 3 in (7.6 cm) or more in diameter
8.					
9.					
10	9	<u></u>			
12					
Image: Stratum (Plot size:					
Woody Vine Stratum (Plot size:)	12.	10			height.
1. None 2.	2			ver	
2					
2	1/NONE	· <u></u>			 Hydrophytic
4 = Total Cover Remarks: (Include photo numbers here or on a separate sheet.)	2				Vegetation
Remarks: (Include photo numbers here or on a separate sheet.)	3		<u> </u>		
Remarks: (Include photo numbers here or on a separate sheet.)	4	A			
	Demotes (hadeda whether were based)		= Total Co)ver	
	Remarks: (Include photo numbers here or on a separate s	meet.)			
	and the second sec				

Absolute Dominant Indicator % Cover Species? Status

Sampling Point: フェメス

Dominance Test worksheet:

SOIL

Profile Description: (Describe to the dep	th needed to document the indicator or confirm	the absence of indicators.)
Depth Matrix	Redox Features	
(inches) Color (moist) %	Color (moist) % Type ¹ Loc ²	Remarks
0-2 101R2/1 100		<u>0e</u>
2-3 104R3/2 95	black organic mixed in	<u>S.L</u>
3-4 104F2/1 100		0e
4-9 104R413 75	104R4/6 5	Sil w/ some glavel
9-20+ 104R33 90	104R36 10	
<u></u>		Sir misone gravel
	۰	······································
	<u> </u>	
	Reduced Matrix, MS=Masked Sand Grains.	² Location: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators:		Indicators for Problematic Hydric Soils ³ :
Histosol (A1)	Polyvalue Below Surface (S8) (LRR R, MLRA 149B)	2 cm Muck (A10) (LRR K, L, MLRA 149B)
Histic Epipedon (A2) Black Histic (A3)	Thin Dark Surface (S9) (LRR R, MLRA 149B)	Coast Prairie Redox (A16) (LRR K, L, R) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R)
Hydrogen Sulfide (A4)	Loamy Mucky Mineral (F1) (LRR K, L)	Dark Surface (S7) (LRR K, L, M)
Stratified Layers (A5)	Loamy Gleyed Matrix (F2)	Polyvalue Below Surface (S8) (LRR K, L)
Depleted Below Dark Surface (A11)	Depleted Matrix (F3)	Thin Dark Surface (S9) (LRR K, L)
Thick Dark Surface (A12) Sandy Mucky Mineral (S1)	Redox Dark Surface (F6) Depleted Dark Surface (F7)	Iron-Manganese Masses (F12) (LRR K, L, R) Piedmont Floodplain Soils (F19) (MLRA 149B)
Sandy Macky Mineral (S1)	Redox Depressions (F8)	Mesic Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy Redox (S5)		Red Parent Material (F21)
Stripped Matrix (S6)		Very Shallow Dark Surface (TF12)
Dark Surface (S7) (LRR R, MLRA 149	3)	Other (Explain in Remarks)
³ Indicators of hydrophytic vegetation and w	atland hydrology must be present, unless disturbed	or problematic.
Restrictive Layer (if observed):	. 8	
Туре:	none observed	
Depth (inches):	in the	Hydric Soil Present? Yes No
Remarks:	***************************************	

WETLAND DETERN	/INATION DATA FORM - Nort	hcentral and Northeast Region
Project/Site: WARD PARCEL		Cumberland sampling Date: 5-9-17
Applicant/Owner: <u>Gosnill- Pal</u>	met	State: <u>ME</u> Sampling Point: <u>J3</u>
Investigator(s): Lederc	Section, Townshi	p, Range:
Landform (hillslope, terrace, etc.): <u>Swa</u>	Local relief (concave	, convex, none): sightly conca ve slope (%): 200
Subregion (LRR or MLRA):	Lat: 13.83017235	Long: - 70 3233 9 Datum: WGS 193 4
Soil Map Unit Name:NooAb.5d	· · · · · ·	Var NWI classification: PFOIE
Are climatic / hydrologic conditions on the site typ		
		Are "Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrolog		
	naturally problematics 100	(n needed, explain any answers in rremains.)
SUMMARY OF FINDINGS – Attach s	ite map showing sampling po	int locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes		npled Area
Hydric Soil Present? Yes _	X No within a V	
Wetland Hydrology Present? Yes _		onal Wetland Site ID: <u>¥3</u>
Remarks: (Explain alternative procedures here	or in a separate report.)	
		· · · ·
HYDROLOGY		
Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required;		Surface Soil Cracks (B6)
X Surface Water (A1)	X Water-Stained Leaves (B9)	Drainage Patterns (B10)
Kingh Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)
X Saturation (A3) Water Marks (B1)	Marl Deposits (B15) Hydrogen Sulfide Odor (C1)	Dry-Season Water Table (C2) Crayfish Burrows (C8)
X Sediment Deposits (B2)		Roots (C3) Saturation Visible on Aerial Imagery (C9)
X Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled S	
Iron Deposits (B5)	Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)		FAC-Neutral Test (D5)
Field Observations:	- } [{]	
Surface Water Present? Yes X No	Depth (inches): $\partial^{\mathcal{V}}$	
Water Table Present? Yes X No	Depth (inches): 10 545 a ce	
Saturation Present? Yes X No. (includes capillary fringe)	Depth (inches): to Sui Sa	Wetland Hydrology Present? Yes X No
Describe Recorded Data (stream gauge, monito	oring well, aerial photos, previous inspe	ctions), if available:
	·	, , , , , , , , , , , , , , , , , , ,
Remarks:		

ant de Maria

Tree Stratum (Plot size: 151)		Dominant Species?		Dominance Test worksheet:
1. ACET NIDIUM	65	<u> </u>	FAC	Number of Dominant Species That Are OBL, FACW, or FAC: (A)
2				Total Number of Dominant 2 Species Across All Strata: (B)
4 5				Percent of Dominant Species 5000 (A/B)
6				Prevalence Index worksheet: Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 5)		= Total Co		OBL species \bigcirc $x = \bigcirc$ FACW species \bigcirc $x = \bigcirc$
1. Pinus Stolous	5	X	FACU	FAC species $65 \times 3 = 195$ FACU species $5 \times 4 = 20$
23				UPL species \bigcirc $x \neq =$ Column Totals: \bigcirc \bigcirc (A)
4 5				Prevalence Index = B/A = 3.0
6				Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation
7		= Total Co		2 - Dominance Test is >50%
Herb Stratum (Plot size: 5)				3 - Prevalence Index is ≤3.0 ¹
1. None				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
2				Problematic Hydrophytic Vegetation ¹ (Explain)
3 4				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
5				Definitions of Vegetation Strata:
6 7				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
89			. <u></u>	Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
10	-			Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
11	· ······			Woody vines – All woody vines greater than 3.28 ft in height.
Woody Vine Stratum (Plot size: 15)	<u></u>	= Total Co	/er	
1. None			·	
2			- <u></u>	Hydrophytic Vegetation
3				Present? Yes <u>No</u>
•		= Total Co	/er	
Remarks: (Include photo numbers here or on a separate $Plot S. B adjust d$		ccour	+ -50	x namon wetland
width				

SOIL

Sampling Point: ______3

Profile Descri	iption: (Describe t	o the dept	h needed to docun	nent the i	ndicator o	or confirm	the absence of	indicators.)	
Depth _	Matrix			x Feature	<u>s</u> 1				
(inches)	Color (moist)		Color (moist)	%	Type1	Loc ²	<u>Texture</u>	Remarks	
0-12.	104R2/1	100	-				O'L -	muchy	
12-19.	10424/2	90	104R3/4	10			<u></u>		
}			,						
	·····								
·				····					
							·······		
							·····		
							·····		
							<u></u>		
1977 - L.									
			Deduced Methods are				21		
Hydric Soil In	centration, D=Depl	enon, KM=	reduced Matrix, MS	o-iviaskec	i sano Gra	រពេ ន		L=Pore Lining, M=Matr Problematic Hydric S	
Histosol (/			Polyvalue Below	v Surface	(S8) (LRR	R.		k (A10) (LRR K, L, ML	
1	pedon (A2)	-	MLRA 149B)		() (,		irie Redox (A16) (LRR	
Black Hist		-	Thin Dark Surfa					ky Peat or Peat (S3) (L	
	Sulfide (A4) Layers (A5)	-	Loamy Mucky M Loamy Gleyed I			L)		ace (S7) (LRR K, L, M) Below Surface (S8) (L	
	Below Dark Surface	- (A11)	Depleted Matrix)			Surface (S9) (LRR K,	
	k Surface (A12)		Redox Dark Su					anese Masses (F12) (I	
1	icky Mineral (S1)	-	Depleted Dark \$		7)			Floodplain Soils (F19)	
1	eyed Matrix (S4)	-	Redox Depress	ions (F8)				dic (TA6) (MLRA 144/	A, 145, 149B)
Sandy Re	vlatrix (S6)							nt Material (F21) Iow Dark Surface (TF1)	ול
	ace (S7) (LRR R, M	ILRA 149B)					plain in Remarks)	-)
	hydrophytic vegetati	ion and wet	land hydrology mus	t be prese	ent, unless	disturbed	or problematic.		
	ayer (if observed): roduy								
Type:	1 10								
Depth (inch	1es):						Hydric Soil Pre	esent? Yes X	No
Remarks:									

WETLAND SUMMARY FORM TRC --IGI 5-4-17 Date: Observers Corps plot No REVISIT? No If Yes, any changes? ?___ Yes No If yes, Explain: Yes Survey ara Social in Dominant NWI Class: PFOI dwnslop Other NWI Classes: Representative/Dominant Wetland Vegetation by Strata Herb Vines Sapling Shruh Tree Tsu can downshope 8 Frasp ISU None office Ac rub Sune arco No Nea * ~ Representative Wetland Hydrology Permanently Flooded Seasonally Flooded Saturated (approximate depth -) (approximate depth -Surface Water; X Water Stained Leaves; Hydrologic Indicators: Sediment Deposits; Sparsely Vegetated Concave Surface; _____Water Marks; _____Drift Lines; _____Surface Scouring; _____ Drainage Patterns; _____Buttressed Trees; _____ Elevated Roots; Moss Trim Lines water table, seturation, 1/2-1" surface Other Observations: Soils **Redox Features** Depth Horizon Matrix Texture Notes Color / Percent (inches) Color NUC 1000 roch Representative Hydric Soils: X Mineral Organic Other Observations: sat to surface, See H20/a NM Stream # 1 Name: _ Intermittent Width (Top-of-Bank-Top-of Bank): Depth @ Center: Perennial Bank Configuration: __Undercut Vertical Gradual Peat-Muck Silt-Mud Sand Gravel/Cobble Boulder Bedrock Channel Substrate: Stream # 2 Name: Width (Top-of-Bank-Top-of-Bank) Qepth @ Center: Perennial Intermittent Undercut Gradual Bank Configuration: Vertical Silt-Mud Sand Gravel/Cobble Channel Substrate: Peat-Muck Boulder Bedrock Wildlife Observations/Sign None als Head workers of soop with now SKETCH ON BACK

WETLAND DETERMINATION DATA FOR	M – Northcentral and Northeast Region
Project/Site: Wash Paral city/c	ounty: <u>Cumberland</u> sampling Date: 5-4-17
Applicant/Owner: Garall- Palmer	State:Sampling Point:S
	n, Township, Range:
Landform (hillslope, terrace, etc.): <u>Slight Swale</u> Local reli	
Subregion (LRR or MLRA): LU Lat: 43,83116 2	
Are climatic / hydrologic conditions on the site typical for this time of year? Y	
Are Vegetation, Soil, or Hydrology significantly distur	,
Are Vegetation, Soil, or Hydrology naturally problema	tic? $J \cup O$ (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes <u>X</u> No	Is the Sampled Area
Hydric Soil Present? Yes <u>></u> No	within a Wetland? Yes <u>X</u> No
Wetland Hydrology Present? Yes <u>Yes</u> No	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.)	
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1)	
X High Water Table (A2)	Moss Trim Lines (B16)
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Od	
	es on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced	I Iron (C4) Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reductio	n in Tilled Soils (C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (0	27) Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Rer	narks) Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	the 1/21
Surface Water Present? Yes X No Depth (inches): NC	
Water Table Present? Yes X No Depth (inches): + 5	X
(includes capillary fringe)	Suchace Wetland Hydrology Present? Yes X No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:
Remarks:	, , , , , , , , , , , , , , , , , , , ,
Buttressedtrunks & eleva	ted roots on many trees

VEGETATION – Use scientific names of plants.

Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet	:	
1	40	X	FAC	Number of Dominant Species		(8)
2. Fraxinus nigra	20	$\overrightarrow{\mathbf{v}}$	FACN	That Are OBL, FACW, or FA	×:	(A)
		<u> </u>	FACU	Total Number of Dominant	G	
3. Populus tremulados	15			Species Across All Strata:		(B)
4. Pinus strobus			FACU	Percent of Dominant Species That Are OBL, FACW, or FAC	-67	<u>ే</u> (A/B)
6				Prevalence Index workshee		
7				Total % Cover of:	Multiply b	\ <i>\</i> *
	90	= Total Co	/er	OBL species	-	_
Sapling/Shrub_Stratum (Plot size:15	<u></u>	10101 00		FACW species		
1. Betula alleghaniensis	_35_	\mathbf{x}	FAC	FAC species		
- Denna undamicisis		-	FACU	FACU species		
2 Fagus grandifilia	<u> 10 </u>	<u>X</u>	170	UPL species		
3				Column Totals:		
4						
5				Prevalence Index = B/		
6				Hydrophytic Vegetation Ind		
7	-1			1 - Rapid Test for Hydrop	• •	n
١	45	= Total Cov	/er	2 - Dominance Test is >5		
Herb Stratum (Plot size: 5)				3 - Prevalence Index is ≤		
1. Hanthemum canadonse	10	<u>×</u>	FACU	4 - Morphological Adapta data in Remarks or or	a separate sh	eet)
2. Osmunda claytoriana	_0_	<u> </u>	FAC	Problematic Hydrophytic	Vegetation ¹ (E	xplain)
3				¹ Indicators of hydric soil and t be present, unless disturbed		
4 5				Definitions of Vegetation S	rata:	
6				Tree - Woody plants 3 in. (7.		
7				at breast height (DBH), regar		
8			• 	Sapling/shrub – Woody plan and greater than or equal to 3		
9 10				Herb - All herbaceous (non-wo		rdless of
11				size, and woody plants less than		
12	·····		- <u></u>	Woody vines - All woody vines height.	greater than 3.2	8 R m
~ *		= Total Cov	/er		******	
Woody Vine Stratum (Plot size: 30)						
1None			<u> </u>			
2			-	Hydrophytic Vegetation	e .	
3.				Present? Yes /	No	
4.						
······································		= Total Cov				
Remarks: (Include photo numbers here or on a separate :			1			******

s	Ô	11
~	v	1 5

Profile Description: (Describe to the depth needed to document the indicator or confirm	n the absence of indicators.)
Depth Matrix Redox Features (inches) Color (moist) % Type ¹ Loc ²	Texture Remarks
0-2 black	Texture Nemarks
2-11 10422/1 10070	SIL
1 1 α 10 $dia \alpha \alpha$ 10 $3l and 1$	Sil very wet
<u>11-19 1091412 9870 1091436 20% C M</u>	Dir very wer
	·
	· ····································
	· ·····
· · · · · · · · · · · · · · · · · · ·	
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains.	² Location: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators:	Indicators for Problematic Hydric Soils ³ :
Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) MLRA 149B)	2 cm Muck (A10) (LRR K, L, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R)
Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R)
Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2)	Dark Surface (S7) (LRR K, L, M) Polyvalue Below Surface (S8) (LRR K, L)
Depleted Below Dark Surface (A11) Depleted Matrix (F3)	Thin Dark Surface (S9) (LRR K, L)
Thick Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7)	Iron-Manganese Masses (F12) (LRR K, L, R)
Sandy Mucky Millera (ST) Depleted Dark Sunace (F7)	Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy Redox (S5)	Red Parent Material (F21)
Stripped Matrix (S6) Dark Surface (S7) (LRR R, MLRA 149B)	Very Shallow Dark Surface (TF12) Other (Explain in Remarks)
³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed Restrictive Layer (if observed):	d or problematic.
Restrictive Layer (if observed): Type:	
Depth (inches):	Hydric Soil Present? Yes No
Remarks:	

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Ward Parcel	city/County: Cumborland Sampling Date: 5-4-17
Applicant/Owner: <u>Gonall-Palmer</u>	State: <u>ME</u> Sampling Point: <u>D- ¥</u> 3/¥5
Investigator(s): <u>Lederc</u>	Section, Township, Range:
Landform (hillslope, terrace, etc.):	Local relief (concave, convex, none): Slope (%): Slope (%):
	13.83100824 Long: -70.3076758 Datum: WOS1989
Soil Map Unit Name: <u>Woodbridge</u>	<u>Sine Sandy loarn</u> NWI classification: UPL
Are climatic / hydrologic conditions on the site typical for this	time of year? Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology sig	gnificantly disturbed? No Are "Normal Circumstances" present? Yes <u>X</u> No
Are Vegetation, Soil, or Hydrology na	iturally problematic? $\mathcal{N}_\mathcal{D}$ (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

HYDROLOGY Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required: check all that apply)	Primary Indicators (minimum of one is required; check all that apply)	Hydric Soil Present? Wetland Hydrology Present? Remarks: (Explain alternative procedu	Yes No X Yes No X res here or in a separate report.)	If yes, optional Wetland Site ID: D+wn ¥538
		Wetland Hydrology Indicators:		
Surface Water Present? Yes No Depth (inches): Water Table Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches): (includes capillary fringe) Yes No Depth (inches):	Surface Water Present? Yes No Depth (inches): Water Table Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches): (includes capillary fringe) Yes No Depth (inches): Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:	 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imager 	Water-Stained Leav Aquatic Fauna (B13 Marl Deposits (B15) Hydrogen Sulfide Or Oxidized Rhizosphe Presence of Reduce Recent Iron Reducti Thin Muck Surface (y (B7) Other (Explain in Re	ves (B9) Drainage Patterns (B10) 3) Moss Trim Lines (B16) a) Dry-Season Water Table (C2) bdor (C1) Crayfish Burrows (C8) eres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) ded Iron (C4) Stunted or Stressed Plants (D1) tion in Tilled Soils (C6) Geomorphic Position (D2) (C7) Shallow Aquitard (D3) emarks) Microtopographic Relief (D4)
	Remarks:	Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes (includes capillary fringe) Yes	No X Depth (inches):	

dine.

VEGETATION – Use scientific names of plants.

Sampling Point: <u>**U**</u>¥3/5

Tree Stratum (Plot size: 30))	Absolute	Dominant Species2		Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>30</u>) 1. <u>Fagus grandisolia</u>	40	Species?	<u>Status</u> FACU	Number of Dominant Species
'N WI VILLY	30	$\overline{\mathbf{x}}$	FAC	That Are OBL, FACW, or FAC: (A)
3. Acer rubning	20		FAR	Total Number of Dominant 5 (B)
4. Quercus pubro	$\frac{-\infty}{10}$	<u> </u>	FACI	
	<u> </u>			Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
5				
6				Prevalence index worksheet:
7	100	= Total Cov	· · · · · · · · · · · · · · · · · · ·	
Sapling/Shrub Stratum (Plot size: 15)		- 10(a) CO	e	FACW species \bigcirc $x_2 = \bigcirc$
	40	Х	FALL) FAC species $50 \times 3 = 50$
1. Fagus grandifolia	<u> </u>			FACU species 112 x4 = 448
2				UPL species $O \times 5 = O$
3				Column Totals: 62 (A) 598 (B)
4				Prevalence Index = B/A = 3.7
5			•	Hydrophytic Vegetation Indicators:
6			. <u></u>	1 - Rapid Test for Hydrophytic Vegetation
7	40	= Total Cov		2 - Dominance Test is >50%
Herb Stratum (Plot size:5)			/ei	3 - Prevalence Index is ≤3.0 ¹
1. Hawthernum canadoise	20	\times	FACU	4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
2. Prinus secolina	2		FAW	Problematic Hydrophytic Vegetation ¹ (Explain)
3				¹ Indicators of hydric soll and wetland hydrology must be present, unless disturbed or problematic.
4 5				Definitions of Vegetation Strata:
6	····		- <u></u>	Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
8		<u></u>	· ·····	Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
9 10				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
11				Woody vines – All woody vines greater than 3.28 ft in
12			<u> </u>	height.
2-1	_ + +	= Total Co	/er	
Woody Vine Stratum (Plot size: 30)				
1None			. <u></u>	Hydrophytic
2			<u></u>	Vegetation
3		. <u></u>		Present? Yes No
4			- <u></u>	
		= Total Co	/er	1
Remarks: (Include photo numbers here or on a separate	sheet.)			

US Army Corps of Engineers

SOIL

Sampling Point: 743/5

.85. -

Profile Desc	ription: (Describe to	o the dept	h needed to docu	ment the l	ndicator	or confirm	the absence	of Indicators.)				
Depth	Matrix		Redo	x Feature	5	1	T	—				
(inches)	Color (moist)		Color (moist)		Type ¹	Loc ²	Texture	Remarks				
<u> </u>	101021	<u> </u>										
<u>3- T</u>	7.59421	100	teres and the second se				SIL					
7-2	04/04/23/6	85	104R3/4	<u> </u>	P	<u> </u>	<u>FSL</u>					
			27 1									
	٩	<i>.</i>	•									
	· · ·							· · · · · · · · · · · · · · · · · · ·				
						••-						
		<u></u> .										
		<u></u>		·····								
<u> </u>					,							
		<u> </u>				. <u></u> .						
<u></u>		<u></u> .										
¹ Type: C=Co	oncentration, D=Deple	etion, RM=	Reduced Matrix, M	S=Masked	Sand Gr	ains.	² Location	: PL=Pore Lining, M=Matrix.				
Hydric Soil	Indicators:							for Problematic Hydric Soils ³ :				
Histosol	• •	-	Polyvalue Belo		(S8) (LRI	₹ R,		fuck (A10) (LRR K, L, MLRA 149B)				
	bipedon (A2) stic (A3)		MLRA 149B Thin Dark Surfa		.RR R. M	.RA 149B)		Prairie Redox (A16) (LRR K, L, R) fucky Peat or Peat (S3) (LRR K, L, R)				
Hydroge	n Sulfide (A4)	-	Loamy Mucky I	Mineral (F1	I) (LRR K			urface (S7) (LRR K, L, M)				
\$	d Layers (A5) d Releve Dede Surface	(411)	Loamy Gleyed)		Polyvalue Below Surface (S8) (LRR K, L) Thin Dark Surface (S9) (LRR K, L)					
	d Below Dark Surface ark Surface (A12)	(AII) .	Depleted Matri: Redox Dark Su				Iron-Manganese Masses (F12) (LRR K, L, R)					
	lucky Mineral (S1)	-	Depleted Dark	Surface (F			Piedmont Floodplain Soils (F19) (MLRA 149B)					
£	Heyed Matrix (S4)		Redox Depress	sions (F8)			Mesic Spodic (TA6) (MLRA 144A, 145, 149B)					
1	ledox (S5) Matrix (S6)							arent Material (F21) hallow Dark Surface (TE12)				
	rface (S7) (LRR R, M	LRA 149B)				Very Shallow Dark Surface (TF12) Other (Explain in Remarks)					
q												
L	f hydrophytic vegetatio Layer (if observed):	on and wel	land hydrology mu	st be prese	ent, unless	disturbed o	or problematic	, ,				
Type:	Luyer (ii ouserveu).											
Depth (in							Hydric Soli	Present? Yes No				
Remarks:						!	<u> </u>					
1												

2. 2. 2.

TRC-WETLAND SUMMARY FORM L.Lederc Date: Observers: vpa 5tml Feature ID: Corps plot: Yes REVISIT? No If Yes, any changes? ?... Yes No If yes, Explain: Yes PFON Dominant NWI Class: PEHIE Other NWI Classes: Representative/Dominant Wetland Vegetation by Strata Herb Vines Tree Sapling Shruh i late. Acenib 0no sen 0 1100 Spi lat **Representative Wetland Hydrology** Permanently Flooded Seasonally Flooded Saturated ١ŕ (approximate depth -(approximate depth - 🖉) Dections Some logic Indicators: X Surface Water; X Sparsely Vegetated Concave Surface; Water Stained Leaves; Hydrologic Indicators: Sediment Deposits; Water Marks; Drift Lines; Surface Scouring; X Drainage Patterns; Buttreased Trees; Elevated Roots; Moss Trim Lines Other Observations: Soil Depth (inches) Horizon Matrix: **Redax Features** Texture Notes Color / Percent Color 5 164l β-10124/2 10 HONR FSL 0-÷ <<u>.</u> √a),---Organiç Representative Hydric Soils: X Mineral mediatel Other Observations: Stream # 1 Name: -Width (Top-of-Bank-Top-of-Bank): 5-BDepth @ Center 1-4 Perennial X Intermittent AJ: Bank Configuration: _____Undercut _____Vertical X Gradual Channel Substrate: _____Peat-Muck _____Silt-Mud X_ Sand _XGravel/Cobble ___ Boulder Bedrock Stream # 2 Name: NA Width (Top-of-Bank-Top-of-Bank): _____ Depth @ Center: Perennial ____ Intermittent Undercut Vertical Peat-Muck Silt-Mud Bank Configuration: _ Gradual Gravel/Cobble Boulder Bedrock Channel Substrate: Sand Wildlife Observations/Sign I-G END CNCT.TOI VP2 witer VΡ Notes SKETCH ON BACK

WETLAND SUMMARY FORM TRC -- Y Date: 5-9-17 Feature ID: 47 L.Lecherc Observers: Yes X No Corps plot: REVISIT? Yes 🗙 No If Yes, any changes? ?____Yes___No If yes, Explain: Other NWI Classes: Dominant NWI Class PFOIF Representative/Dominant Wetland Vegetation by Strata Sopling Herb Viner Tsucan Hai can Pinstr Osmain Shrub Betall NK Acen Averub Representative Wetland Hydrology A Seasonally Flooded X Saturated Permanently Flooded (approximate depth rologic Indicators: X Surface Water, X Water Stained Leaves; Sediment Deposits; Sparsely Vegetated Concave Surface; Water Marks; Drift Lines; Surface Scouring; X Drainage Patterns; Buttressed Trees; Elevated Roots; Hydrologic Indicators: Surface Scouring; 500P @head with 5 Other Observations: Soil Depth Horizon Matrix **Redox** Features Texture Notes (inches) Color / Percent Color 104R2 8 mucluρ, Representative Hydric Soils: A Mineral Organic Other Observations: Free Hz0 8 Soct. to Suc-Sace N/A Stream # I Name;

 Width (Top-of-Bank-Top-of-Bank):
 Depth @ Center:
 Perennial
 Intermittent

 Bank Configuration:
 Undercut
 Vertical
 Gradual

 Channel Substrate:
 Peat-Muck
 Silt-Mud
 Sand
 Gravel/Cobble
 Boulder______

 Channel Substrate: Stream # 2 Name: Width (Top-of-Bank-Top-of-Bank): _____ Depth @ Center: _ Perennial ____ Intermittent _____ Bank Configuration: ___Undercut ___Gradual Vertical Channel Substrate: Peat-Muck Silt-Mud Sand Gravel/Cobble Boulder. Bodmel Wildlife Observations/Sign buds Notes Sind-1 hiows SKETCH ON BACK

ATTACHMENT D

2017 Vernal Pool Survey Results

Observer's Pool ID: <u>VP I</u>	MDIFW Pool ID:
1. PRIMARY OBSERVER INFORMATION a. Observer name: L.Leclerc	_
b. Contact and credentials previously provided	? O No (submit Addendum 1) XY Yes
2. PROJECT CONTACT INFORMATION	
a. Contact name: 🗙 same as observer O othe	
b. Contact and credentials previously provided?	? O No (submit Addendum 1) 🛛 🚫 Yes
c. Project Name: Unknown	
3. LANDOWNER CONTACT INFORMATION	
a. Are you the landowner? OYes 💆 No If no	o, was landowner permission obtained for survey? 🔗 Yes ONo
b. Landowner's contact information (required)	
Name:	Phone:
Street Address:	
4. VERNAL POOL LOCATION INFORMATION a. Location Township: <u>Cumberled</u>	
Brief site directions to the pool (using mapped	
South of the interse	ection of Orchard & Whitney J. Maine, south of Orchard Rd
Koads in Cumberland) 01001014
Loads in Cumberland b. Mapping Requirements	
 b. Mapping Requirements i. USGS topographic map OR aerial photographic ii. GPS location of vernal pool (use Datum 	aph with pool clearly marked.
b. Mapping Requirements i. USGS topographic map OR aerial photogra	aph with pool clearly marked.
 b. Mapping Requirements i. USGS topographic map OR aerial photographic ii. GPS location of vernal pool (use Datum 	aph with pool clearly marked.
 b. Mapping Requirements i. USGS topographic map OR aerial photogra ii. GPS location of vernal pool (use Datum Longitude/Easting: 3.833867 1 Coordinate system: NGS 1984 Check one: GIS shapefile 	raph with pool clearly marked. NAD83 / WGS84) Latitude/Northing: <u>- </u>
b. Mapping Requirements i. USGS topographic map OR aerial photogra ii. GPS location of vernal pool (use Datum Longitude/Easting: 3.833867 L Coordinate system: 1984 Check one: GIS shapefile - send to Jason.Czapiga@m	naine.gov; observer has reviewed shape accuracy (Best) neated by multiple GPS points. (Excellent)
b. Mapping Requirements i. USGS topographic map OR aerial photogra ii. GPS location of vernal pool (use Datum Longitude/Easting: 3.833867 I Coordinate system: 13.833867 I Coordinate system: 13.833867 I Check one: GIS shapefile - send to Jason.Czapiga@m O The pool perimeter is delin - Include map or spreadshee	naine.gov; observer has reviewed shape accuracy (Best) neated by multiple GPS points. (Excellent)

DEPLW0897-82008 04/18/2017

	VPI 🥋								
Maine State Vernal Po	ool Assessment Form								
5. VERNAL POOL HABITAT INFORMATION									
a. Habitat survey date (<u>only if different</u> from indicator survey dates on page 3):									
b. Wetland habitat characterization									
Choose the best descriptor for the landscape setting:									
O Floodplain depression O Other:	sociated with larger wetland complex								
 Check all wetland types that best apply to this pool: Forested swamp Wet meadow Shrub swamp Lake or pond cove Peatland (fen or bog) Abandoned beaver floward 									
Emergent marsh Active beaver flowage	ATV or skidder rut								
c. Vernal pool status under the Natural Resources P									
i. Pool Origin: Natural ONatural-Modified OU									
	dern or historic human impacts to the pool (required):								
Though perhaps pooled tag departies of road, although not likely as there is pooling on opposite site and									
ii. Pool Hydrology									
Select the pool's <u>estimated</u> hydroperiod AND <u>provide rationale</u> in box (required):									
O Permanent O Semi-permanent (drying partially in all years ar completely in drought years)									
Explain:									
Winter berry & Cinnamor growing throughout Dout	Ein & grasess/sedges								
■ Maximum depth at survey: 00-12" (0-1 ft.) 012									
■ Approximate size of pool (at spring highwater): Wie	<i>t</i>								
Predominate substrate in order of increasing hydro	period:								
Mineral soil (bare, leaf-litter bottom, or upland mosses present)	O Organic matter (peat/muck) shallow or restricted to deepest portion								
O Mineral soil (sphagnum moss present)	O Organic matter (peat/muck) deep and widespread								
Pool vegetation indicators in order of increasing hyperbolic structure in the second structure in t	droperiod (check all that apply):								
Terrestrial nonvascular spp. (e.g. haircap	Wet site ferns (e.g. royal fern, marsh fern)								
moss, lycopodium spp.)	Wet site shrubs (e.g. highbush blueberry, maleberry, winterberry, mountain holly)								
lady fern, bracken fern)	 Witherberry, mountain holicy Wet site graminoids (e.g. blue-joint grass, tussock sedge, cattail, bulrushes) 								
fern, interrupted fern, New York fern)	Aquatic vascular spp. (e.g. pickerelweed, arrowhead)								
Moist site vasculars (e.g. skunk cabbage, jewelweed, blue flag iris, swamp candle)	Floating or submerged aquatics (e.g. water lily,								
Sphagnum moss (anchored or suspended)	water shield, pond weed, bladderwort)								
Faunal indicators (check all that apply):	No vegetation in pool								
Fish Bullfrog or Green Frog tadpoles	Other:								
iii. Inlet/Outlet Flow Permanency									
-	annel providing water flowing into or out of the pool):								
X No inlet or outlet O Permanent inlet or outle	et (channel with well-defined banks and permanent flow)								
O Intermittent inlet O Other or Unknown (exp or outlet	olain):								

DEPLW0897-82008 04/18/2017

X

	Maine State Vernal Pool Assessment Form														
	6. VERNAL POOL INDICATOR INFORMATION														
a. I	a. Indicator survey dates: $5 - 9 - 17 + 5 - 10 - 17$														
b. I	b. Indicator abundance criteria and pool survey effort														
■ Is pool depression bisected by 2 ownerships (straddler pool)? OXYes ONo															
	■ Was the entire pool surveyed for egg masses? OYes XNo; what % of entire pool surveyed? <u></u> <u>70</u> °° ■ For each Indicator species, indicate the exact number of egg masses, confidence level for species								σ						
determination, and egg mass maturity. Separate cells are provided for separate survey dates.															
	INDICATOR Egg Masses (or adult Fairy Shrimp) Tadpoles/Larvae ⁴						•								
	SPECIES	Visit #1	Visit #2	Visit #3	Conf	idence l	_evel ¹	Egg N	lass Ma	aturity ²	0	bserv	ed	Confide Leve	
	Wood Frog	0	$\overline{\mathcal{D}}$		-3										<u> </u>
	Spotted	2	2		3										
	Salamander Blue-spotted	0	0		3										╉┈┨
	Salamander Fairy Shrimp ³	NR			1							l i			
	1-Confidence level		2 = 60-95			l									
	2-Egg mass maturi Hatching	ty: F= Fres	h (<24 hrs), M= Mature (round en	ibryos), A									
	3-Fairy shrimp: X =	•					20	WF	EX 0	κ +	ad	loq.	øs.	abse	red
_	4-Tadpoles/larvae:	•		1	0										
	Rarity criteria Note any rare sp	N ecles ass	0~9.	obsen with vernal	sed noois (Theory	ations	ebould	ha acc	ompan	Jod	by p	hotor	ranhe	
			f Verificati	en#	poois. <u>i</u>	<u>2056(v)</u>		silouid	Ue acc				ificatio	*	· _]
	SPECIES	Р	H S		SPECIE	S				F		н	S	" CL	.**
	Blanding's Turtle]	Wood T	urtle]				
	Spotted Turtle				Ribbon Snake										
	Ringed Boghaunter			•	Other:	- Soor									
	*Method of verification: P = Photographed, H = Handled, S = Seen **CL - Confidence level in species determination: 1= <60%, 2= 60-95%, 3= >95%														
d. C	d. Optional observer recommendation:														
	SVP Potential SVP XNon Significant VP Indicator Breeding Area														
- C	eneral vernal n														
ι. C	e. General vernal pool comments and/or observations of other wildlife: Caddissly lanae observed in pool														
	coddissly lande observed in pool														
L															
Ser	nd completed forr	n and sup	porting	documentat	tion to:	Maine	Dept.	of Inlar	nd Fish	eries a	nd \	Nildli	fe		
Send completed form and supporting documentation to: Maine Dept. of Inland Fisheries and Wildlife Attn: Vernal Pools															
NOTE	650 State Street, Bangor, ME 04401 NOTE: Digital submission (to Jason.Czapiga@maine.gov) of vernal pool field forms and photographs is only														
NOTE	acceptable for	projects	with 3	szapiga@m or fewer as:	iaine.g sessec	ov) ot ' I pools	vernal ; <u>large</u>	pool f r proje	ield foi icts mi	rms an ust be	id p mai	hoto led a	grap Is ha	hs is c rd cop	oniy ieş.
For MD									-						
	ol is: Significant	eviewed by		Contraction and an end of the second	II Not S	nitials: Ionificar			s not me	et biolog	ical r	riteria			
				itical data						et MDEF	Sec. Stand		2000-00-00-00-00-00-00-00-00-00-00-00-00	ria.	
Comme	ents:														

DEPLW0897-82008 04/18/2017

Print Form

Page 3 of 3

INSTRUCTIONS:	
 Complete all 3 pages of form thoroughly. I <u>Clear photographs</u> of a) the pool AND b) the egg mass) are <u>required</u> for all observers. 	Most fields are <u>required</u> for pool registration. le indicators (one example of each species
Observer's Pool ID: <u>VP</u>	MDIFW Pool ID:
1. PRIMARY OBSERVER INFORMATION a. Observer name: <u>L. Le Je く</u> b. Contact and credentials previously provided? O No	(submit Addendum 1) 🛛 🖉 Yes
2. PROJECT CONTACT INFORMATION a. Contact name: 🗙 same as observer O other b. Contact and credentials previously provided? O No c. Project Name:	(submit Addendum 1) 🏹 Yes
b. Landowner's contact information (required) Name:	ndowner permission obtained for survey? Yes ONo Phone:State:Zip:
c. Large Projects: check if separate project landowr	
4. VERNAL POOL LOCATION INFORMATION a. Location Township: <u>Cumberland</u> Brief site directions to the pool (using mapped landm Approx Goo' to the east Of chart & White products Suthat a chard for	arks): as the intersection of inclumber land & approx 300'
b. Mapping Requirements	
i. USGS topographic map OR aerial photograph with	
II. GPS location of vernal pool (use Datum NAD8: Longitude/Easting: 43.831958 Latitude Coordinate system: NG5 198 4	/Northing: -70. 299705
Check one: GIS shapefile - send to Jason.Czapiga@maine.go O The pool perimeter is delineated t - Include map or spreadsheet with co O The above GPS point is at the cer O The center of the pool is approxim 	nordinates. hter of the pool. (Good) hately mO ft O in the compass direction of

1- y.

0. V	ERNAL POOL HABITAT			
a		nly if different from indicator	survey dates on page 3).	
	. Wetland habitat chara		Survey alles on page of	*
		itor for the landscape setting:		
	O Isolated depression O Floodplain depression	😡 Pool ass	ociated with larger wetland comp	lex
	Check all wetland types	that best apply to this pool:		
	Forested swamp	Wet meadow	Slow stream	Dug pond or
	🕅 Shrub swamp	Lake or pond cove	Floodplain	borrow pit
	 Peatland (fen or bog) Emergent marsh) Abandoned beaver flowag	ge D Mostly unvegetated pool	Roadside ditch Other:
c	. Vernal pool status und	ler the Natural Resources Pro	otection Act (NRPA)	
		ural ONatural-Modified OUr		
	∧		ern or historic human impacts to	the pool (required):
		or unknown, describe any mod		
	U			· · · · · · · · · · · · · · · · · · ·
	ii. Pool Hydrology	nated hydroperiod AND provide	rationalo in hox (required):	
	•	Semi-permanent	Ephemeral	O Unknown
		(drying partially in all years and		O OHKIIOWI
		completely in drought years)	in most years)	
	Explain:			5
	Shallon dee	the with Winter		AND TO A STATE OF A ST
	21-0000 0-1		sewl George throw	2. mrs have
ĺ			sent ground inter	2. and have
	■ Maximum depth at su	irvey: 🕱 0-12" (0-1 ft.) 012-	36" (1-3 ft.) O 36-60" (3-5 ft.)	O >60" (>5 ft.)
	 Maximum depth at su Approximate size of p 	nrvey: 🔍0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt	36" (1-3 ft.) O36-60" (3-5 ft.) h: <u>30</u> Om Øft Length: <u>-</u>	O >60" (>5 ft.)
	 Maximum depth at su Approximate size of p Predominate substrate 	arvey: 🔍 0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt te in order of increasing hydrop	36" (1-3 ft.) O36-60" (3-5 ft.) h: <u>30</u> Om Øft Length: <u>-</u> eriod:	O >60" (>5 ft.) <u>45</u> O m Ø ft
	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, 	nrvey: 🔍0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: <u>-</u> eriod: O Organic matter (peat/muck	O >60" (>5 ft.) 45_ O m Ø ft) shallow or
	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) 	arvey: 0.12" (0-1 ft.) 0 12- bool (at spring highwater): Widt te in order of increasing hydrope leaf-litter bottom, or upland	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: <u>-</u> eriod: O Organic matter (peat/muck restricted to deepest portio	O > 60" (> 5 ft.) $4 5 O m \emptyset \text{ ft}$) shallow or on
	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) O Mineral soil (sphage) 	arvey: 00-12" (0-1 ft.) 012- bool (at spring highwater): Widt te in order of increasing hydrope leaf-litter bottom, or upland gnum moss present)	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: <u>-</u> eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck)	O > 60" (>5 ft.) $4 \le O m \bigotimes ft$) shallow or on
~ (5	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) O Mineral soil (sphage) Pool vegetation indication 	arvey: 🔍 0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt te in order of increasing hydrope leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydr	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: <u>-</u> eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck roperiod (check all that apply):	O >60" (>5 ft.) 45 O m Ø ft) shallow or on) deep and widespread
ochs e wa	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) O Mineral soil (sphage) Pool vegetation indicate Terrestrial nonvasional 	arvey: 00-12" (0-1 ft.) 0 12- bool (at spring highwater): Widt te in order of increasing hydrope leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydrope scular spp. (e.g. haircap	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: <u>-</u> eriod: O Organic matter (peat/muck restricted to deepest portio O Organic matter (peat/muck roperiod (check all that apply): ☐ Wet site ferns (e.g. royal fern	O >60" (>5 ft.) 45 O m Ø ft) shallow or on) deep and widespread , marsh fern)
ochs e was	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) Mineral soil (bare, mosses present) Mineral soil (sphage) Pool vegetation indicate Mineral nonvasion Terrestrial nonvasion Mineral soil (sphage) 	arvey: 00-12" (0-1 ft.) 0 12- bool (at spring highwater): Widt te in order of increasing hydrope leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydrope scular spp. (e.g. haircap	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: <u>-</u> eriod: O Organic matter (peat/muck restricted to deepest portio O Organic matter (peat/muck roperiod (check all that apply): ☐ Wet site ferns (e.g. royal fern ☑ Wet site shrubs (e.g. highbus	O >60" (>5 ft.) 45 O m Ø ft) shallow or on) deep and widespread , marsh fern)
ochs 2 Wat 2 ver	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) O Mineral soil (bare, mosses present) O Mineral soil (sphage) Pool vegetation indicate Terrestrial nonvast moss, lycopodium Dry site ferns (e.g. lady fern, bracket) 	arvey: (0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt te in order of increasing hydrope leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydr scular spp. (e.g. haircap spp.) g. spinulose wood fern, n fern)	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: <u>-</u> eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck roperiod (check all that apply): ☐ Wet site ferns (e.g. royal fern Wet site shrubs (e.g. highbus winterberry, mountain holly)	O >60" (>5 ft.) 45 O m Ø ft) shallow or on) deep and widespread , marsh fern) h blueberry, maleberry
acks 2 Wat 2 wet	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) O Mineral soil (bare, mosses present) O Mineral soil (sphage) Pool vegetation indication Terrestrial nonvasion Terrestrial nonvasion Dry site ferns (e.generation for the formation of t	arvey: (0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt the in order of increasing hydropo- leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydropo- scular spp. (e.g. haircap i spp.) g. spinulose wood fern, n fern) e.g. sensitive fern, cinnamon	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: <u>-</u> eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck) roperiod (check all that apply): ☐ Wet site ferns (e.g. royal fern Wet site shrubs (e.g. highbus winterberry, mountain holly) ☐ Wet site graminoids (e.g. blue	O >60" (>5 ft.) 45 O m Ø ft) shallow or on) deep and widespread , marsh fern) h blueberry, maleberry
ochs 2 mai 2 vel	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) Most site ferns (e.g. lady fern, bracker Moist site ferns (e.g. fern, interrupted for the form) 	arvey: X0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt te in order of increasing hydrope leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydr scular spp. (e.g. haircap i spp.) g. spinulose wood fern, in fern) e.g. sensitive fern, cinnamon ern, New York fern)	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: <u>-</u> eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck roperiod (check all that apply): ☐ Wet site ferns (e.g. royal fern Wet site shrubs (e.g. highbus winterberry, mountain holly)	O >60" (>5 ft.) <u>45</u> O m Ø ft) shallow or) deep and widespread , marsh fern) h blueberry, maleberry e-joint grass, tussock
ochs 2 war 2 ver	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) Mineral soil (bare, mosses present) Mineral soil (sphage) Pool vegetation indicates Terrestrial nonvasional moss, lycopodium Dry site ferns (e.g. lady fern, bracket) Moist site ferns (e.g. fern, interrupted fern, interrupted fern) 	arvey: (0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt te in order of increasing hydrope leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydr scular spp. (e.g. haircap spp.) g. spinulose wood fern, h fern) e.g. sensitive fern, cinnamon ern, New York fern) irs (e.g. skunk cabbage,	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck) roperiod (check all that apply): Wet site ferns (e.g. royal fern Wet site shrubs (e.g. highbus winterberry, mountain holly) Wet site graminoids (e.g. blue sedge, cattail, bulrushes) Aquatic vascular spp. (e.g. pi	O >60" (>5 ft.) <u>45</u> O m Ø ft) shallow or on) deep and widespread , marsh fern) h blueberry, maleberry e-joint grass, tussock ckerelweed, arrowhead
ochs 2 wyae 2 weet	 Maximum depth at su Approximate size of p Predominate substrated Mineral soil (bare, mosses present) Moist site ferns (e.g lady fern, bracker Moist site ferns (e.g fern, interrupted fern,	arvey: X0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt te in order of increasing hydrope leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydr scular spp. (e.g. haircap i spp.) g. spinulose wood fern, in fern) e.g. sensitive fern, cinnamon ern, New York fern)	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck roperiod (check all that apply): ☐ Wet site ferns (e.g. royal fern Wet site shrubs (e.g. highbus winterberry, mountain holly) ☐ Wet site graminoids (e.g. blue sedge, cattail, bulrushes)	O >60" (>5 ft.) <u>45</u> O m Ø ft) shallow or on) deep and widespread , marsh fern) h blueberry, maleberry e-joint grass, tussock ckerelweed, arrowhead ics (e.g. water lily,
ocks 2 Wat 2 vel	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) Mineral soil (bare, mosses present) Moist soil (bare, fern, bracker Moist site ferns (c fern, interrupted ferns) Moist site vascular jewelweed, blue field Sphagnum moss 	arvey: (0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt the in order of increasing hydropo- leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydropo- tators in order of increasing hydro- scular spp. (e.g. haircap in spp.) g. spinulose wood fern, in fern) e.g. sensitive fern, cinnamon ern, New York fern) irs (e.g. skunk cabbage, lag iris, swamp candle) (anchored or suspended)	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck roperiod (check all that apply): Wet site ferns (e.g. royal fern Wet site shrubs (e.g. highbus winterberry, mountain holly) Wet site graminoids (e.g. blue sedge, cattail, bulrushes) Aquatic vascular spp. (e.g. pi Floating or submerged aquat water shield, pond weed, blac	O >60" (>5 ft.) <u>45</u> O m Ø ft) shallow or on) deep and widespread , marsh fern) h blueberry, maleberry e-joint grass, tussock ckerelweed, arrowhead ics (e.g. water lily,
ochs 2 wyod 2 ver	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) Mineral soil (bare, mosses present) Terrestrial nonvase moss, lycopodium Dry site ferns (e.g lady fern, bracker Moist site ferns (e.g fern, interrupted ferns) Moist site vascular jewelweed, blue ferns Sphagnum moss 	arvey: (0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt the in order of increasing hydropo- leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydro- scular spp. (e.g. haircap ispp.) g. spinulose wood fern, in fern) e.g. sensitive fern, cinnamon ern, New York fern) irs (e.g. skunk cabbage, lag iris, swamp candle) (anchored or suspended) eck all that apply):	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck roperiod (check all that apply): Wet site ferns (e.g. royal fern Wet site ferns (e.g. nighbus winterberry, mountain holly) Wet site graminoids (e.g. blue sedge, cattail, bulrushes) Aquatic vascular spp. (e.g. pi Floating or submerged aquat water shield, pond weed, blac No vegetation in pool	O >60" (>5 ft.) <u>45</u> O m Ø ft) shallow or on) deep and widespread , marsh fern) h blueberry, maleberry e-joint grass, tussock ckerelweed, arrowhead ics (e.g. water lily,
ochs 2 Wat 2 Del	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) Mineral soil (bare, mosses present) Terrestrial nonvase moss, lycopodium Dry site ferns (e.g lady fern, bracker Moist site ferns (e.g fern, interrupted ferns) Moist site vascular jewelweed, blue ferns Sphagnum moss 	arvey: (0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt the in order of increasing hydropo- leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydropo- tators in order of increasing hydro- scular spp. (e.g. haircap in spp.) g. spinulose wood fern, in fern) e.g. sensitive fern, cinnamon ern, New York fern) irs (e.g. skunk cabbage, lag iris, swamp candle) (anchored or suspended)	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck roperiod (check all that apply): Wet site ferns (e.g. royal fern Wet site shrubs (e.g. highbus winterberry, mountain holly) Wet site graminoids (e.g. blue sedge, cattail, bulrushes) Aquatic vascular spp. (e.g. pi Floating or submerged aquat water shield, pond weed, blac	O >60" (>5 ft.) <u>45</u> O m Ø ft) shallow or on) deep and widespread , marsh fern) h blueberry, maleberry e-joint grass, tussock ckerelweed, arrowhead ics (e.g. water lily,
e wat	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) Mineral soil (bare, mosses present) Pool vegetation indicators (constructed for fern, interrupted for fern, interrupted for fern, interrupted for gewelweed, blue for Sphagnum mosses Faunal indicators (che Fish Bullfrom) 	arvey: (0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt the in order of increasing hydrope leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydrope scular spp. (e.g. haircap i spp.) g. spinulose wood fern, in fern) e.g. sensitive fern, cinnamon ern, New York fern) irs (e.g. skunk cabbage, lag iris, swamp candle) (anchored or suspended) eck all that apply): Nove og or Green Frog tadpoles	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck roperiod (check all that apply): Wet site ferns (e.g. royal fern Wet site ferns (e.g. nighbus winterberry, mountain holly) Wet site graminoids (e.g. blue sedge, cattail, bulrushes) Aquatic vascular spp. (e.g. pi Floating or submerged aquat water shield, pond weed, blac No vegetation in pool	O >60" (>5 ft.) <u>45</u> O m Ø ft) shallow or on) deep and widespread , marsh fern) h blueberry, maleberry e-joint grass, tussock ckerelweed, arrowhead ics (e.g. water lily,
e wat	 Maximum depth at su Approximate size of p Predominate substrated Mineral soil (bare, mosses present) Dreduced to the moss of t	arvey: (0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt the in order of increasing hydropic leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydropic scular spp. (e.g. haircapic spp.) g. spinulose wood fern, in fern) e.g. sensitive fern, cinnamon ern, New York fern) ars (e.g. skunk cabbage, lag iris, swamp candle) (anchored or suspended) eck all that apply): Nove og or Green Frog tadpoles manency	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck) roperiod (check all that apply): Wet site ferns (e.g. royal fern Wet site shrubs (e.g. highbus winterberry, mountain holly) Wet site graminoids (e.g. blue sedge, cattail, bulrushes) Aquatic vascular spp. (e.g. pi Floating or submerged aquat water shield, pond weed, blae No vegetation in pool O Other:	O >60" (>5 ft.) <u>45</u> O m Ø ft) shallow or on) deep and widespread , marsh fern) h blueberry, maleberry e-joint grass, tussock ckerelweed, arrowhead ics (e.g. water lily, dderwort)
e wat	 Maximum depth at su Approximate size of p Predominate substrated Mineral soil (bare, mosses present) Dreduced to the moss of t	arvey: (0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt the in order of increasing hydropo- leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydro- scular spp. (e.g. haircap in spp.) g. spinulose wood fern, in fern) e.g. sensitive fern, cinnamon ern, New York fern) irs (e.g. skunk cabbage, lag iris, swamp candle) (anchored or suspended) eck all that apply): Norce og or Green Frog tadpoles manency (a seasonal or permanent chan	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck roperiod (check all that apply): Wet site ferns (e.g. royal fern Wet site shrubs (e.g. highbus winterberry, mountain holly) Wet site graminoids (e.g. blue sedge, cattail, bulrushes) Aquatic vascular spp. (e.g. pi Floating or submerged aquat water shield, pond weed, blac No vegetation in pool Other: nel providing water flowing into o	O >60" (>5 ft.) <u>45</u> O m Ø ft) shallow or on) deep and widespread , marsh fern) h blueberry, maleberry e-joint grass, tussock ckerelweed, arrowhead ics (e.g. water lily, dderwort) r out of the pool):
e wat	 Maximum depth at su Approximate size of p Predominate substrate Mineral soil (bare, mosses present) Mineral soil (bare, mosses present) Terrestrial nonvast moss, lycopodium Dry site ferns (e.g lady fern, bracker Moist site ferns (e.g lady fern, bracker Moist site vasculat jewelweed, blue fi Sphagnum moss Faunal indicators (che Fish Bullfro Inlet/Outlet Flow Per Type of inlet or outlet 	arvey: (0-12" (0-1 ft.) O 12- bool (at spring highwater): Widt the in order of increasing hydropo- leaf-litter bottom, or upland gnum moss present) ators in order of increasing hydro- scular spp. (e.g. haircap in spp.) g. spinulose wood fern, in fern) e.g. sensitive fern, cinnamon ern, New York fern) irs (e.g. skunk cabbage, lag iris, swamp candle) (anchored or suspended) eck all that apply): Norce og or Green Frog tadpoles manency (a seasonal or permanent chan	36" (1-3 ft.) O 36-60" (3-5 ft.) h: <u>30</u> O m Ø ft Length: eriod: O Organic matter (peat/muck restricted to deepest portion O Organic matter (peat/muck roperiod (check all that apply): Wet site ferns (e.g. royal fern Wet site shrubs (e.g. highbus winterberry, mountain holly) Wet site graminoids (e.g. blue sedge, cattail, bulrushes) Aquatic vascular spp. (e.g. pi Floating or submerged aquat water shield, pond weed, blae No vegetation in pool O Other: nel providing water flowing into on (channel with well-defined banks)	O >60" (>5 ft.) <u>45</u> O m Ø ft) shallow or on) deep and widespread , marsh fern) h blueberry, maleberry e-joint grass, tussock ckerelweed, arrowhead ics (e.g. water lily, dderwort) r out of the pool):

÷		м	laine Sta	ate Ve	rnal P	ool A	ssess	men	t Fori	n	VP:	<u>)</u>	
6. VE	6. VERNAL POOL INDICATOR INFORMATION												
a.1	a. Indicator survey dates: <u>5-4-17</u> <u>8</u> <u>5-10-1</u> 7												
b.	Indicator abund	ance crite	eria and p	ool surv	ey effo	rt							
	Is pool depress												
	■ Was the entire					•							—
	For each indica determination,												
				gg Masse			•		364010		-		_arvae ⁴
	INDICATOR SPECIES	Visit	Visit	Visit	1	dence L		1	Aass Ma	aturity ²	Observ	17	Confidence
	Wood Frog	<u>#1</u>	#2 ()	#3	3								Level ¹
	Spotted	- qp-	ā		3								
	Salamander Blue-spotted	<u> </u>	l D		13-								
	Salamander	0	0		$\left \right\rangle$						·		
	Fairy Shrimp ³	NA	INK		3								
	1-Confidence level 2-Egg mass maturi				round em	bryos), A	\= Adva	nced (lo	ose matri	x. curve	d embryos), H≖ H,	atched or
	Hatching 3-Fairy shrimp: X =												
	4-Tadpoles/larvae:	•				n	0	Nood		4 U	0000	ر مالک	macer
c. 1	Rarity criteria	None	e obs	enred	:		Or	to	292	ies	2777	2015	asses d
	Note any rare sp					Observa	ations	should	be acc	ompar	nied by p	hotog	raphs.
	SPECIES		Verification*	CL**	SPECIE	s					thod of Ve		n* CL**
	Blanding's Turtle		<u>H S</u>		Wood Ti								
	Spotted Turtle				Ribbon S	inake							
	Ringed Boghaunter				Other:								
	*Method of verifica							000	·	·····			
	**CL - Confidence	•			1- <00%	, 2- 00-	95%, 3	- 2937	0				
	Optional observ	er recom tential SV	• .			m.			It				
				on Signifi	cant vP	ا ا ا	ndicat	or bree	eding A	rea			
e. (General vernal p	ool com	ments and	l/or obse	rvation	s of ot	her wi	ildlife:					
Sei	nd completed for	n and sup	porting do	cumenta	tion to:	Attn: V	/emal	Pools				ife	
		• •							angor,			_	
NOTE	E: Digital submis acceptable for												
Earli												-	
	DIFW use only R	_	MDIFW Dat tentially Sign	Constant and a second		itials: Ionificar	t due to		e not me	et hioloc	ical criteri		
TTRS pc	oria. 🖂 orgininean		lacking critic	al data		ginnear	it due its	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -			^o vernal po		ia.
Comm	ents:												
DEPLV	V0897-82008 04/1	8/2017								Prin	t Form		Page 3 of 3
Ś	SEM JUH	1111										×	

707 Sable Oaks Drive, Suite 30 South Portland, Maine 04106 207.772.2515

Traffic Assessment Orchard Road Subdivision – Cumberland, Maine October 2017

Introduction

Gorrill Palmer has completed a traffic assessment for the proposed Orchard Road Subdivision on Orchard Road in Cumberland, Maine. The site is proposed to be accessed via a full movement driveway on Orchard Road, approximately 750 ft south of its intersection with Whitney Road. The development is proposed to be a 10 lot subdivision for 10 single family homes. The following is a summary of the trip generation, crash history, and sight distance evaluation for the proposed project.

Trip Generation

The trip generation for the proposed 10 single family houses has been calculated using the Institute of Transportation Engineers' (ITE) publication, *Trip Generation*, Ninth Edition, Land Use Code (LUC) 210 – Single-Family Detached Housing. The proposed development is forecast to generate the following:

- Weekday: 95 trip ends
- AM peak hour of the generator: 8 trip ends
- PM peak hour of the generator: 10 trip ends
- AM peak hour of the adjacent street: 8 trip ends
- PM peak hour of the adjacent street: 10 trip ends
- Saturday: 99 trip ends
- Saturday Peak hour of the generator: 9 trip ends

This level of trip generation is not anticipated to have a significant impact on the surrounding roadway network. Additionally, the forecast trip generation is less than the threshold of 99 trip ends during a <u>peak hour</u> for requiring a MaineDOT Traffic Movement Permit.

Crash History

GP obtained the three year collision data in the vicinity of the site from MaineDOT (attached) for the period of 2014 to 2016, the most recent period available. To evaluate if a location has a higher rate of crashes, MaineDOT uses two criteria to define a High Crash Location (HCL). Both criteria must be met in order to be classified as an HCL.

- 1. A critical rate factor (CRF) of 1.00 or more for a three year period. A CRF compares the actual crash rate to the rate for similar intersections in the state. A CRF of less than 1.00 indicates a rate of less than average **and**:
- 2. A minimum of eight crashes over the same three year period.

Based on a review of the collision data, there are no HCLs in the vicinity of the site.

Sight Distance Evaluation

GP evaluated the sight distance at the proposed site access on Orchard Road. Both the Town and MaineDOT have guidelines for sight distance. The basic sight distance standards are as follows:

Posted Speed (mph)	Sight Distance Requirement (ft)			
rosted speed (mpn)	Town of Cumberland	MaineDOT		
25	250	200		
30	300	250		
35	350	305		
40	400	360		
45	450	425		
50	500	495		

Standards for Sight Distance

The Town does not specify an evaluation method, so the sight distance has been evaluated using MaineDOT methodology. The evaluation methodology is as follows:

Driveway observation point:	10 feet off edge of traveled way
Height of eye at driveway:	3 1⁄2 feet above ground
Height of approaching vehicle:	4 ¼ feet above ground

The speed limit on Orchard Road is 35 mph. The Town requires a sight distance of 350 ft and MaineDOT requires a sight distance of 305 ft. The following table summarizes the measured sight distances at the proposed subdivision road:

	Sight Distance (ft)				
Approach	Looking Left	Looking Right	Requirement		
		LOOKING RIGHT	Town	MaineDOT	
Exiting Subdivision onto Orchard	275	340	350	305	

Existing Sight Distance Summary

Traffic Assessment October 2017 Page 3

As shown in the table, the existing sight distances are forecast to be less than the sight distances required by the Town and MaineDOT. However, if vegetation in the sight triangle is cleared, the sight distances are anticipated to exceed the Town and MaineDOT requirements. Looking left, if trees are removed adjacent to the site access, the sight distance is anticipated to be greater than 450 ft. Looking right, if brush is cleared along the roadway, the sight distance is anticipated to be 360 ft. The sight distance should be evaluated throughout construction of the site access, to ensure the Town and MaineDOT requirements are met.

Conclusions

The following is a summary of the conclusions:

- The proposed project is forecast to generate 8 trip ends and 10 trip ends during the Weekday AM and PM peak hours of the generator respectively. This is less than the 99 trip end threshold for requiring a MaineDOT Traffic Movement Permit.
- 2. Based on a review of the MaineDOT crash data, there are no high crash locations in the vicinity of the site.
- 3. The sight distances at the site driveway are anticipated to meet the MaineDOT and Town requirements, with the removal of vegetation along the roadway adjacent to the site access.
- 4. Overall the project is anticipated to have minimal impact on the surrounding roadway network.

PROJECT PARCEL SITE CUMBERLAND ASSESSOR'S MAP & LOT NUMBERS

<u>LOT</u>

59B

<u>MAP</u>

R08

Applicant:

TZ PROPERTIES 23 STORMY BROOK ROAD FALMOUTH, ME 04105

LEGEND

EXISTING	DESCRIPTION	PROPOSED
	BUILDING	
	RIGHT OF WAY	
	PROPERTY LINE	
	BUILDING SETBACK	
	ZONE LINE	
	WETLAND BOUNDARY	
<u>· · · · · · · · · · · · · · · · · · · </u>	GUIDE RAIL	· · · · ·
	EDGE OF PAVEMENT	
	EDGE OF GRAVEL DRIVE	
100	GRADING CONTOUR LINE	100
X 226.4	SPOT ELEVATION	<u>+ 100.31</u>
	TREELINE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
G #1	TREES & HEDGES	
Ŕ	POLE WITH LIGHT FIXTURE(S)	●□
\sim	UTILITY POLE	×
	FREESTANDING SIGN	—
\longrightarrow	PAINTED DIRECTIONAL TRAFFIC ARROW	\rightarrow
OE	OVERHEAD ELECTRIC/TELEPHONE	OHE/T
UE	UNDERGROUND ELECTRIC/TELEPHONE	UGE/T
w	WATER LINE	8"W
D	STORM DRAIN LINE	8"SD
	CULVERT	8"CULVERT
****	HYDRANT	•
wv X	WATER GATE VALVE	
	WATER SHUT OFF VALVE	
	MANHOLE	•
	CATCH BASIN	
	TEST PIT	
0	IRON ROD (SET)	
\bigcirc	IRON ROD (FOUND)	
_	MONUMENT	
	RIPRAP	26269
	SILT FENCE – PERIMETER	
	STONE SEDIMENT BARRIER	$\langle n \rangle$
X ;	FENOE	
	WELL	

Date

Revision

GENERAL NOTES

GENERAL NOTES

1. TOPOGRAPHIC DATA, EXISTING CONDITIONS, AND BOUNDARY SURVEY WAS PREPARED BY TITCOMB ASSOCIATES OF FALMOUTH. MAINE ON SEPTEMBER 29, 2017. FIELD SURVEYED TOPOGRAPHY INCLUDED A 100 FOOT WIDE STRIP CENTERED ON THE ROAD AND THE STORMWATER TREATMENT BASINS. ALL OTHER TOPOGRAPHY IS AERIAL BASED OBTAINED FROM THE MAINE GIS WEBSITE.

2. THE CONTRACTOR IS SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR THE ELEVATION OF THE EXISTING UTILITIES AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE VARIOUS UTILITY COMPANIES AND WHERE POSSIBLE MEASUREMENTS TAKEN IN THE FIELD. THIS INFORMATION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST CALL THE APPROPRIATE UTILITY COMPANY AND DIG SAFE AT LEAST 72 HOURS PRIOR TO ANY EXCAVATION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RELOCATE ALL EXISTING UTILITIES WHICH CONFLICT WITH THE PROPOSED IMPROVEMENTS SHOWN ON THE PLANS.

IMPORTANCE TO THE OWNER AND THE CONTRACTOR IS RESPONSIBLE FOR COMPLYING WITH ALL EROSION CONTROL MEASURES SHOWN ON THE PLANS. ADDITIONAL EROSION CONTROL MEASURES SHALL BE INSTALLED IF DEEMED NECESSARY BY ON-SITE INSPECTIONS OF THE OWNER, THE TOWN OF CUMBERLAND OR THEIR REPRESENTATIVES AT NO ADDITIONAL COST TO THE OWNER.

INFORMATION ONLY. THE CONTRACTOR SHALL PREPARE HIS OWN MATERIAL SCHEDULES BASED UPON HIS PLAN REVIEW. ALL SCHEDULES SHALL BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO ORDERING MATERIALS OR PERFORMING WORK.

MAINE DEPARTMENT OF TRANSPORTATION SPECIFICATIONS, AND/OR TOWN OF CUMBERLAND SPECIFICATIONS.

TRC OF SCARBOROUGH, MAINE. PERMITTING NOTES

1. THIS PROJECT IS SUBJECT TO THE TERMS AND CONDITIONS OF A SUBDIVISION PLAN APPROVAL FROM THE TOWN OF CUMBERLAND. THE CONSTRUCTION WILL BE GOVERNED BY THE TOWN OF CUMBERLAND ZONING ORDINANCE WHICH IS AVAILABLE FOR VIEWING AT THE OFFICE OF THE ENGINEER OR THE MUNICIPAL OFFICE.

2. THIS PROJECT IS SUBJECT TO THE TERMS AND CONDITIONS OF A STORMWATER PERMIT AND NRPA PERMIT BY RULE FROM MAINE DEPARTMENT OF ENVIROMENTAL PROTECTION.

3. THE CONTRACTOR SHALL REVIEW THE ABOVE REFERENCED PERMITS PRIOR TO SUBMITTING A BID FOR THIS PROJECT, AND INCLUDE COSTS AS NECESSARY TO COMPLY WITH THE CONDITIONS OF THESE PERMITS.

· · · · · · · · · · · · · · · · · · ·		
Preliminary Subdivision Application	10-31-17	WCH
Issued For	Date	By

ORCHARD ROAD SUBDIVISION

CUMBERLAND, MAINE

PREPARED BY:

Relationships. Responsiveness. Results. www.gorrillpalmer.com 207.772.2515

3. MAINTENANCE OF EROSION CONTROL MEASURES IS OF PARAMOUNT

4. ALL MATERIAL SCHEDULES SHOWN ON THE PLANS ARE FOR GENERAL

5. ALL MATERIALS AND CONSTRUCTION METHODS SHALL CONFORM TO

6. WETLANDS ON THIS PLAN WERE DELINEATED AND GPS LOCATED BY

LAYOUT NOTES

1. ALL DIMENSIONING, UNLESS NOTED OTHERWISE, IS TO THE FACE OF CURB.

OFFSETS TO CATCH BASINS AND MANHOLES ARE TO THE CENTER OF THE FRAME.

3. PIPE LENGTH EQUALS THE CENTER TO CENTER DISTANCES BETWEEN CATCH BASINS AND/OR MANHOLES MINUS ONE-HALF OF THE DIAMETER OF EACH CATCH BASIN OR MANHOLE.

PROPERTY LINE AND R.O.W. MONUMENTS SHALL NOT BE DISTURBED BY CONSTRUCTION. IF DISTURBED, THEY SHALL BE RESET TO THEIR ORIGINAL LOCATIONS AT THE CONTRACTOR'S EXPENSE, BY A MAINE LICENSED LAND SURVEYOR.

PROPOSED RIGHT OF WAY MONUMENTS AND PROPERTY LINE PINS SHALL BE INSTALLED UNDER THE DIRECTION OF A MAINE LICENSED LAND SURVEYOR.

6. CURB RADII UNLESS OTHERWISE NOTED ON THE PLAN SHALL BE A MINIMUM OF 3'.

UTILITY NOTES

1. THE LOCATION OF THE PROPOSED UNDERGROUND ELECTRICAL SERVICE IS APPROXIMATE AND THE CONTRACTOR SHALL COORDINATE THE EXACT LOCATION WITH CENTRAL MAINE POWER COMPANY.

SUBSURFACE WASTEWATER DISPOSAL SHALL COMPLY WITH THE HHE-200 APPLICATION FOR EACH SITE.

GRADING AND DRAINAGE NOTES

1. UNLESS OTHERWISE NOTED, ALL STORM DRAIN PIPE SHALL BE IN ACCORDANCE WITH MOOT SPECIFICATIONS SECTION 603-- PIPE CULVERTS AND STORM DRAINS, LATEST REVISION WITH THE EXCEPTION THAT THE ONLY ACCEPTABLE TYPES OF PIPE ARE AS FOLLOWS:

> REINFORCED CONCRETE PIPE, CLASS III POLYVINYL-CHLORIDE (PVC) PIPE SMOOTH BORE POLYETHYLENE - ADS OR HANCOR

2. TOPSOIL STRIPPED IN AREAS OF CONSTRUCTION THAT IS SUITABLE FOR REUSE AS LOAM SHALL BE STOCKPILED ON SITE AT A LOCATION TO BE DESIGNATED BY THE OWNER. UNSUITABLE SOIL SHALL BE SEPARATED, REMOVED AND DISPOSED OF AT AN APPROVED DISPOSAL LOCATION OFF SITE. 3. THE CONTRACTOR SHALL ANTICIPATE THAT GROUNDWATER WILL BE ENCOUNTERED DURING CONSTRUCTION AND SHALL INCLUDE SUFFICIENT COSTS WITHIN THEIR BID TO PROVIDE DEWATERING AS NECESSARY. NO SEPARATE PAYMENT SHALL BE MADE TO THE CONTRACTOR FOR DEWATERING.

EROSION CONTROL NOTES

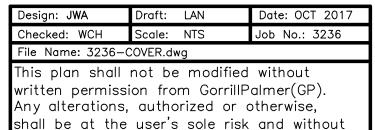
LAND DISTURBING ACTIVITIES SHALL BE ACCOMPLISHED IN A MANNER AND SEQUENCE THAT CAUSES THE LEAST PRACTICAL DISTURBANCE OF THE SITE.

PRIOR TO BEGINNING ANY CLEARING/LAND DISTURBING ACTIVITIES, THE CONTRACTOR SHALL INSTALL THE PERIMETER SILT FENCES AND THE CONSTRUCTION ENTRANCE.

ALL GROUND AREAS DISTURBED FOR CONSTRUCTION WILL BE GRADED, LOAMED AND SEEDED AS SOON AS POSSIBLE. PERMANENT SEED MIXTURE SHALL CONFORM TO THE SEEDING PLAN CONTAINED IN THE EROSION CONTROL NOTES INCLUDED ON SHEET 11.

PRIOR TO PAVING, THE CONTRACTOR SHALL FLUSH SEDIMENT FROM ALL STORM DRAIN LINES, REMOVE ACCUMULATED SEDIMENT FROM SUMPS AND INVERTS AND PROPERLY DISPOSE OF.

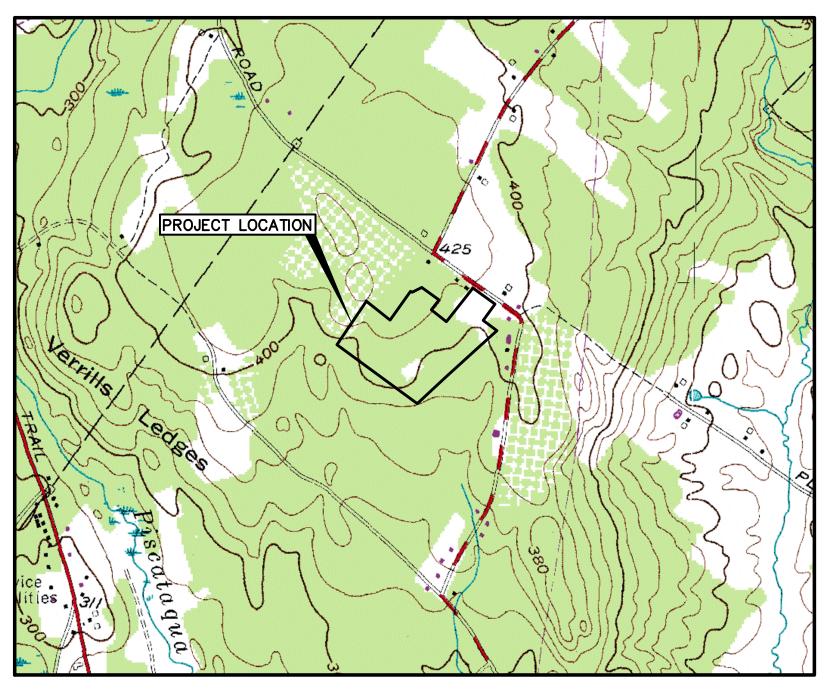
5. ALL CATCH BASINS WITH OUTLET PIPES 18" DIAMETER OR LESS SHALL BE PROVIDED WITH A "SNOUT" SEDIMENTATION HOOD PER DETAIL. 6. SILT FENCES SHALL BE INSPECTED, REPAIRED AND CLEANED AS NOTED IN THE EROSION CONTROL NOTES.


THE CONTRACTOR SHALL REPAIR AND ADD STONE TO THE CONSTRUCTION ENTRANCE AS IT BECOMES SATURATED WITH MUD TO ENSURE THAT IT WORKS AS PLANNED DURING CONSTRUCTION.

SILT REMOVED FROM AROUND INLETS AND BEHIND THE SILT FENCES SHALL BE PLACED ON A TOPSOIL STOCKPILE AND MIXED INTO IT FOR LATER USE IN LANDSCAPING OPERATIONS.

CONTAINED ON DRAWING 11 OF THIS PLAN SET. 10. THE MAINTENANCE SCHEDULE FOR THE CATCH BASIN SEDIMENT SUMPS IS CONTAINED IN THE EROSION CONTROL NOTES INCLUDED ON SHEET 11.

11. THE CONTRACTOR IS CAUTIONED THAT FAILURE TO COMPLY WITH THE SEQUENCE OF CONSTRUCTION, EROSION/SEDIMENT CONTROL PLAN, AND OTHER PERMIT REQUIREMENTS BASED UPON ANY THIRD PARTY REVIEW (ie MDEP) MAY RESULT IN MONETARY PENALTIES. THE CONTRACTOR SHALL BE ASSESSED ALL SUCH PENALTIES AT NO COST TO THE OWNER OR PERMITTEE.


12. ALL NON-PAVED AREAS DISTURBED DURING CONSTRUCTION SHALL BE LOAMED AND SEEDED, UNLESS OTHERWISE DIRECTED BY THE OWNER. 13. ALL DISTURBED AREAS ARE TO RECEIVE A MINIMUM OF 4" OF TOPSOIL PRIOR TO PERMANENT SEEDING.

iability to GP.

GORRILL PALMER

Relationships. Responsiveness. Results. www.gorrillpalmer.com 207.772.2515

LOCATION MAP

SCALE: 1" = 1000'

INDEX

	1	COVER SHEET, GENERAL NOTES, & LEGEND
	2	EXISTING CONDITIONS PLAN
	3	BOUNDARY SURVEY
	4	SUBDIVISION PLAN
	5	OVERALL LAYOUT AND UTILITY PLAN
	6	OVERALL GRADING, DRAINAGE & EROSION CONTROL PLAN
	7	LAYOUT AND UTILITY PLAN
)	8	GRADING AND DRAINAGE PLAN AND PROFILE
	9	SITE DETAILS
	10	DRAINAGE & UTILITY DETAILS
	11-12	GRASSED UNDERDRAIN DETAILS
	13	EROSION CONTROL DETAILS
	14	EROSION CONTROL NOTES

PERMITS

UTILITIES

CENTRAL MAINE POWER

PORTLAND, MAINE 04103

CONTACT: JAMES COUGH

5 DAVIS FARM ROAD

TIME WARNER CABLE

PORTLAND, MAINE 04102

118 JOHNSON ROAD

(207) 253-2222

(207) 797–1842

PORTLAND. MAINE 04103

CONTACT: TROY MACDONALD

162 CANCO ROAD

(207) 828-2882

TELEPHONE:

VERIZON

CABLE:

ELECTRIC:

TYPE OF PERMIT MDEP STORMWATER PERMIT NRPA PERMIT BY RULE

CATEGORY 2 PERMIT

MAJOR SUBDIVISION APPLICATION

GOVERNING BODY

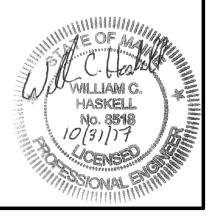
MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION 312 CANCO ROAD PORTLAND, ME 04103 (207) 822–6300

U.S. ARMY CORPS OF ENGINEERS 675 WESTERN AVE #3 MANCHESTER, ME 04351

TOWN OF CUMBERLAND 290 TUTTLE ROAD CUMBERLAND, MAINE 04021 (207) 829-5559

<u>STATUS</u> SUBMITTED: TBD

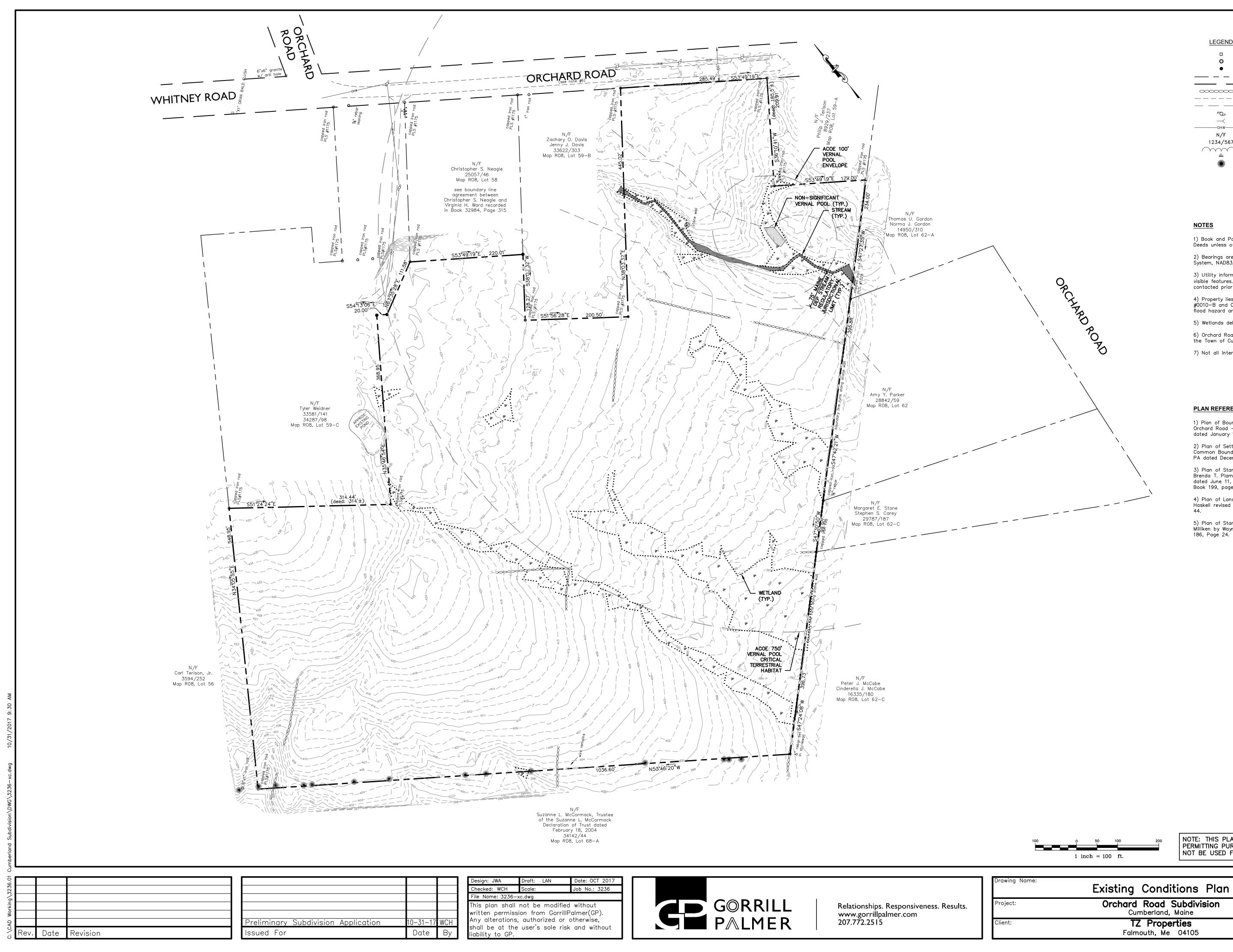
CALL BEFORE YOU DIG


1-888-344-7233

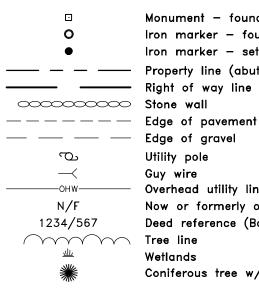
NOTE: THIS PLAN SET IS ISSUED FOR

PERMITTING PURPOSES AND SHALL NOT BE USED FOR CONSTRUCTION.

SUBMITTED:


SUBMITTED: 10/31/17 (PRELIMINARY PLAN)

Drawing No.


rawing Name Cover Sheet, General Notes, and Legend Orchard Road Subdivision Project: Cumberland, Maine lient: TZ Properties Falmouth, Me 04105

9. EROSION CONTROL NOTES ACCOMPANY THIS PLAN SET AND ARE

Design: JWA	Draft: LAN	Date: OCT 2017					
Checked: WCH	Scale:	Job No.: 3236					
File Name: 3236->	File Name: 3236-xc.dwg						
This plan shall written permissi Any alterations, shall be at the liability to GP.	not be modified ion from GorrillP authorized or o user's sole risk	without almer(GP). otherwise, and without					

LEGEND

Monument – found lron marker – found lron marker — set (#5 rebar) Property line (abutter) ----- Right of way line Edge of gravel Utility pole Guy wire Overhead utility line Now or formerly of Deed reference (Book/Page) Wetlands Coniferous tree w/ barbed wire remains

NOTES

1) Book and Page references are to the Cumberland County Registry of Deeds unless otherwise noted.

2) Bearings are referenced to grid north, Maine State Plane Coordinate System, NAD83, West Zone.

3) Utility information on this plan is approximate, based on location of visible features. DigSafe and/or the appropriate utilities should be contacted prior to any construction.

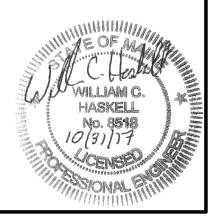
4) Property lies within Zone C based on FIRM Community #230162 Panels #0010—B and 0015—B, dated May 19, 1981. It does not lie within a special flood hazard area.

6) Orchard Road has a defined width of 4 rods (66 feet) as accepted by the Town of Cumberland on April 10, 1797. Apparent location shown.

7) Not all interior stone walls have been located on the property.

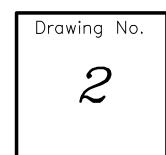
PLAN REFERENCES

5) Wetlands delineated by others.

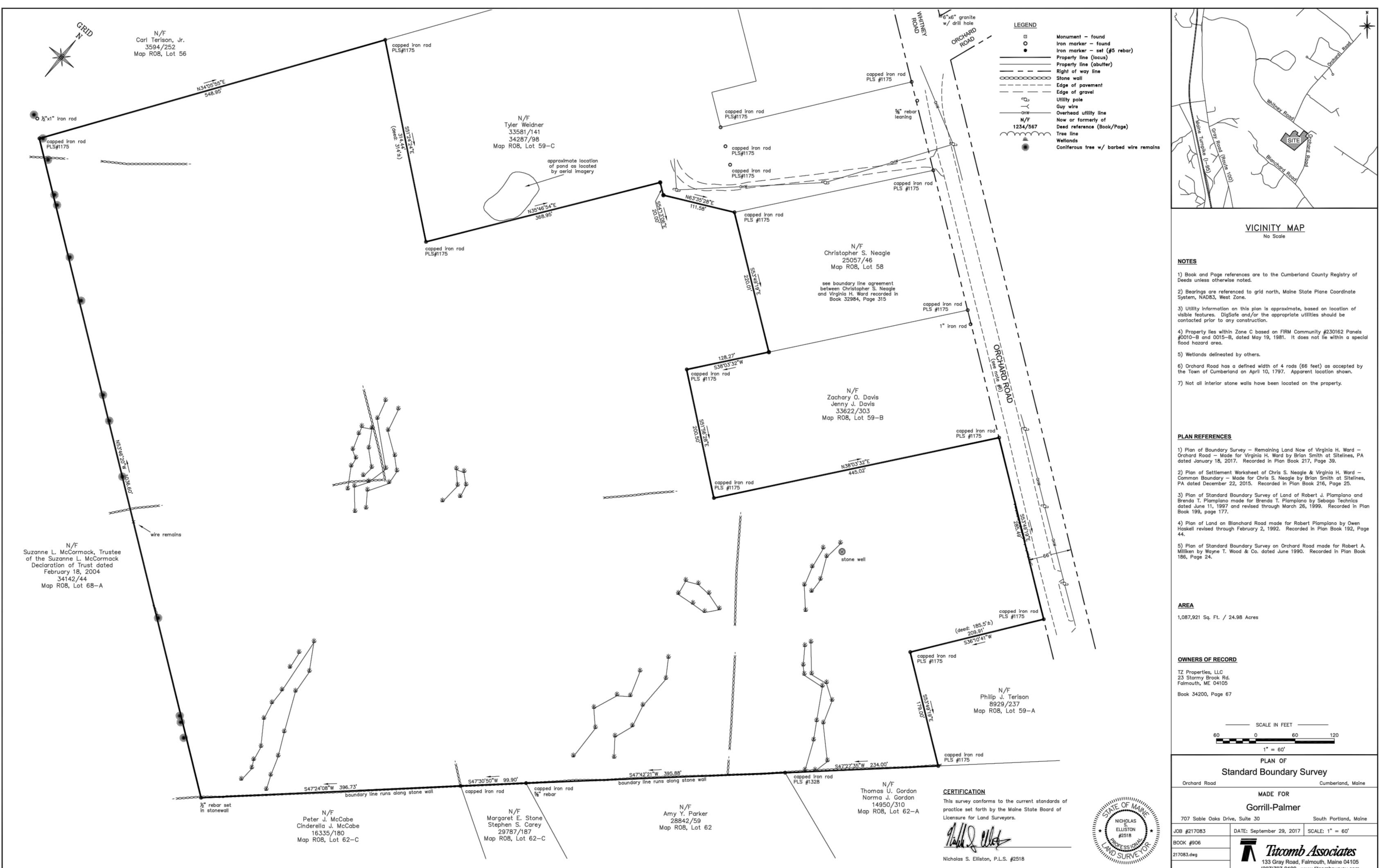

1) Plan of Boundary Survey — Remaining Land Now of Virginia H. Ward — Orchard Road — Made for Virginia H. Ward by Brian Smith at Sitelines, PA dated January 18, 2017. Recorded in Plan Book 217, Page 39.

2) Plan of Settlement Worksheet of Chris S. Neagle & Virginia H. Ward — Common Boundary — Made for Chris S. Neagle by Brian Smith at Sitelines, PA dated December 22, 2015. Recorded in Plan Book 216, Page 25.

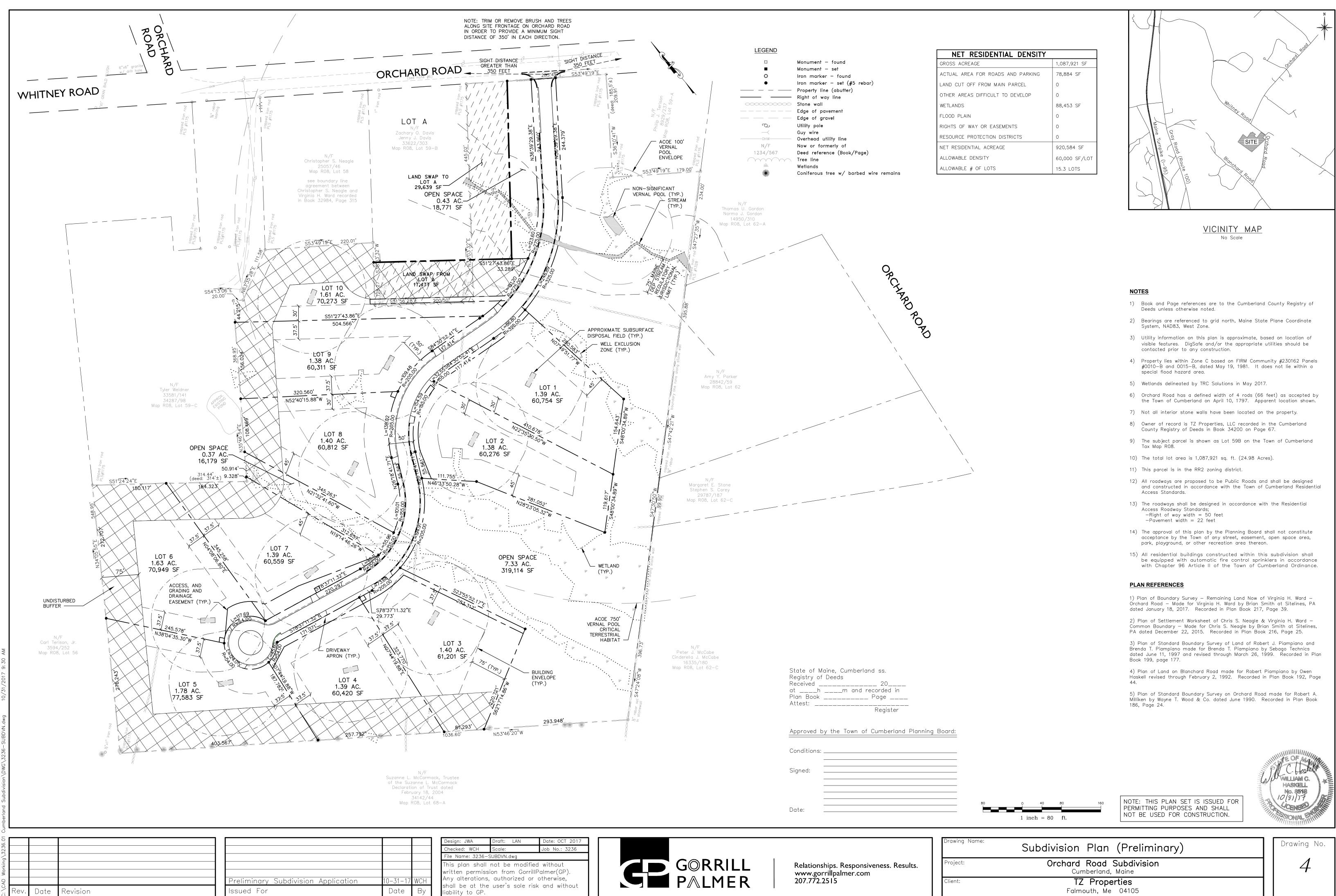
3) Plan of Standard Boundary Survey of Land of Robert J. Piampiano and Brenda T. Piampiano made for Brenda T. Piampiano by Sebago Technics dated June 11, 1997 and revised through March 26, 1999. Recorded in Plan Book 199, page 177.


4) Plan of Land on Blanchard Road made for Robert Piampiano by Owen Haskell revised through February 2, 1992. Recorded in Plan Book 192, Page

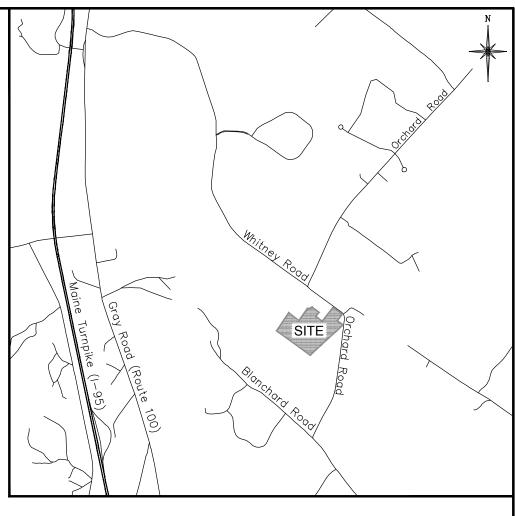
5) Plan of Standard Boundary Survey on Orchard Road made for Robert A. Milliken by Wayne T. Wood & Co. dated June 1990. Recorded in Plan Book 186, Page 24.


00	0	50	100	
	1 in	ch = 10	0 f t	

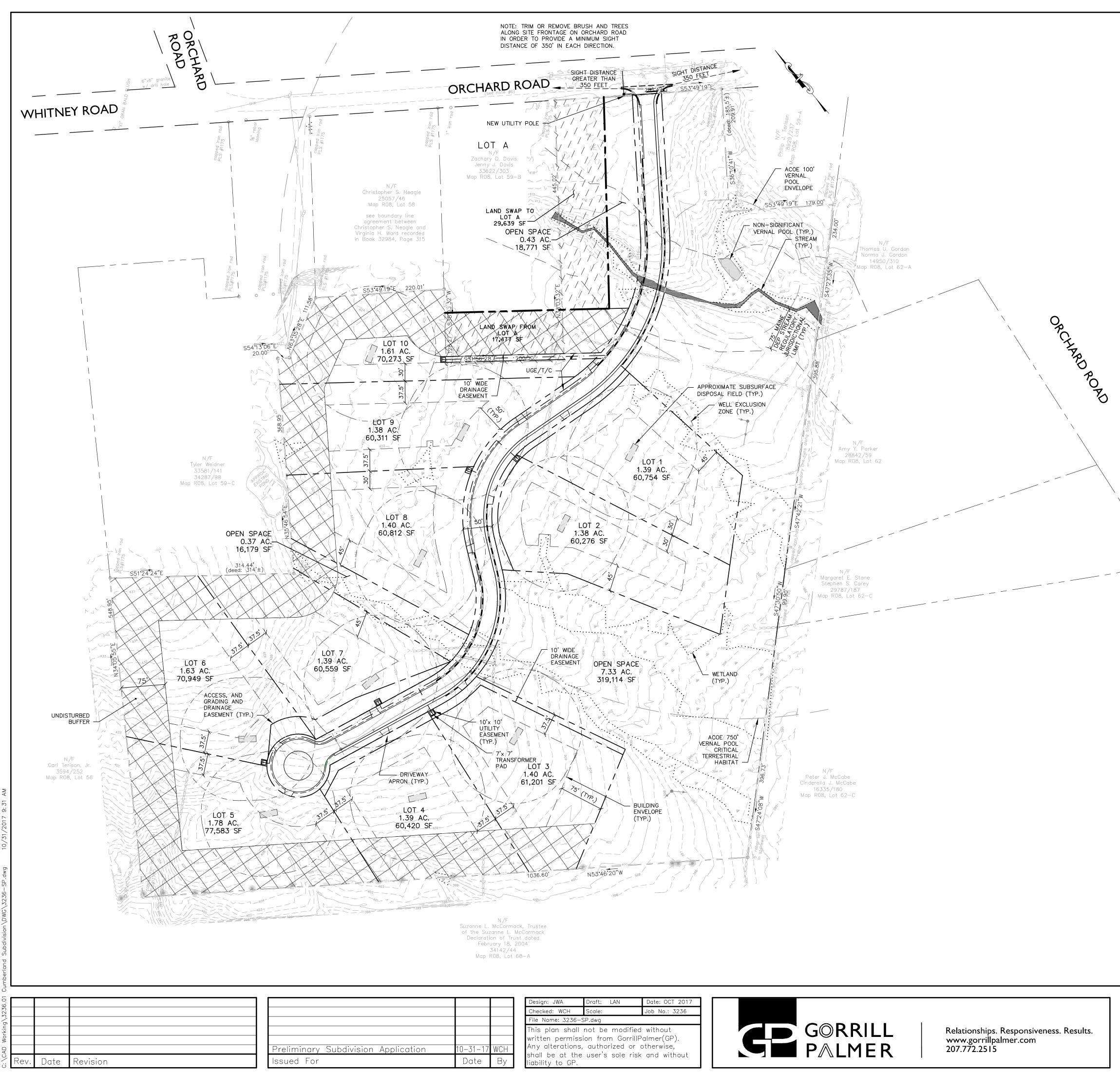
NOTE: THIS PLAN SET IS ISSUED FOR PERMITTING PURPOSES AND SHALL NOT BE USED FOR CONSTRUCTION.



Orchard Road Subdivision Cumberland, Maine **TZ Properties** Falmouth, Me 04105



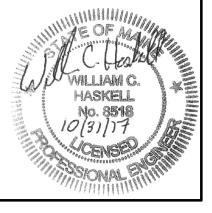
(207)797-9199 www.titcombsurvey.com



Beelgn: enn	DIGIT: D'IN	Bate: OOT 2017			
Checked: WCH	Scale:	Job No.: 3236			
File Name: 3236-SUBDVN.dwg					
This plan shall	not be modified	without			
written permissi					
Any alterations,					
shall be at the	user's sole risk	and without			

NET RESIDENTIAL DENSITY	
GROSS ACREAGE	1,087,921 SF
ACTUAL AREA FOR ROADS AND PARKING	78,884 SF
LAND CUT OFF FROM MAIN PARCEL	0
OTHER AREAS DIFFICULT TO DEVELOP	0
WETLANDS	88,453 SF
FLOOD PLAIN	0
RIGHTS OF WAY OR EASEMENTS	0
RESOURCE PROTECTION DISTRICTS	0
NET RESIDENTIAL ACREAGE	920,584 SF
ALLOWABLE DENSITY	60,000 SF/LOT
ALLOWABLE # OF LOTS	15.3 LOTS

ng	Board:	

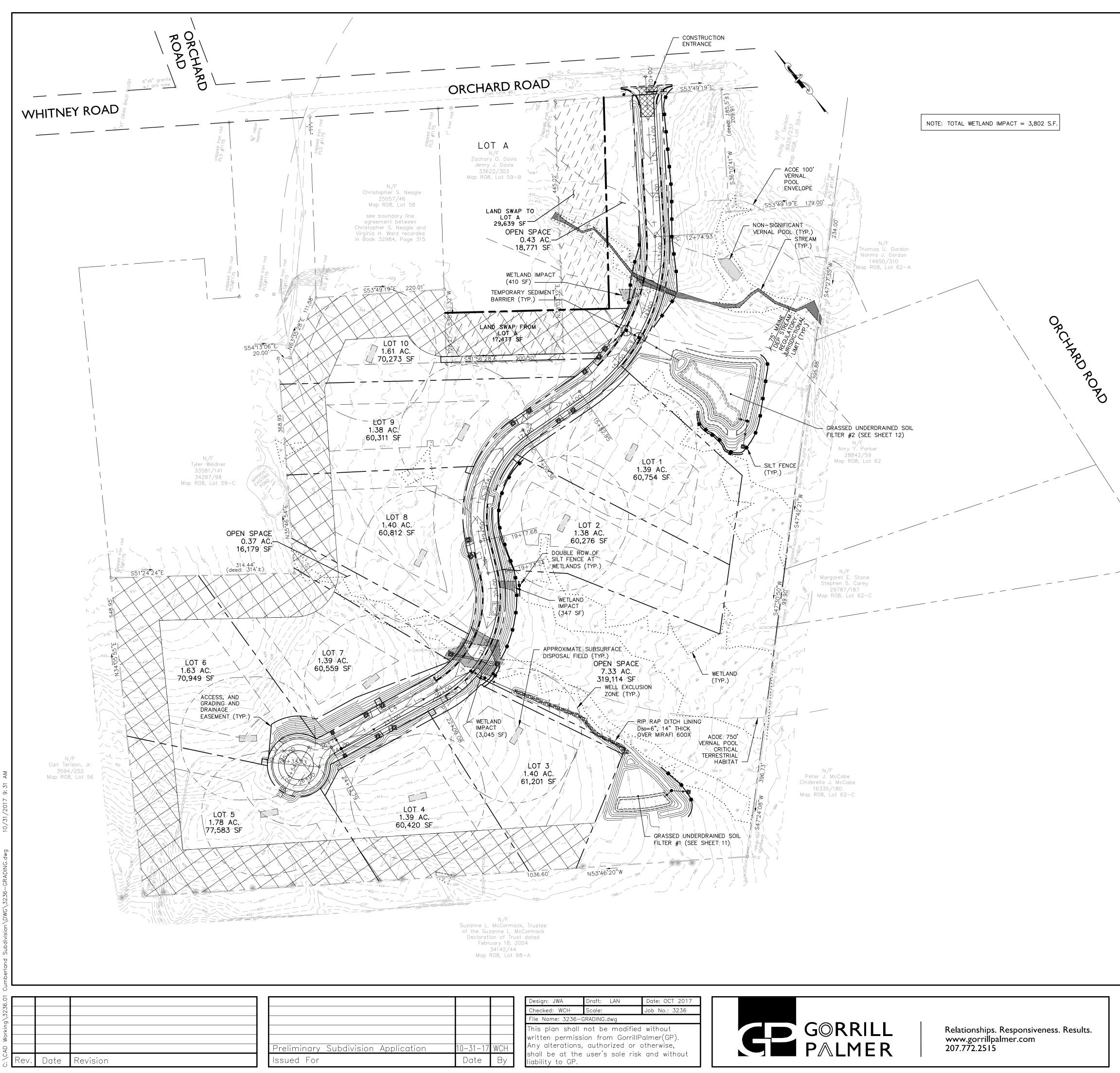


Design: JWA	Draft: LAN	Date: OCT 2017
Checked: WCH	Scale:	Job No.: 3236
File Name: 3236-S	SP.dwg	
	on from GorrillP authorized or c	almer(GP). otherwise,

NET RESIDENTIAL DENSITY		SPACE AND B	ULK STANDAR	DS
GROSS ACREAGE	1,087,921 SF	RR2 ZONE	REQUIRED	PROVIDED
ACTUAL AREA FOR ROADS AND PARKING	78,884 SF	MIN. LOT SIZE (CLUSTER)	60,000 S.F.	> 60,000 \$
LAND CUT OFF FROM MAIN PARCEL	0	MIN. FRONTAGE	100'	> 100'
OTHER AREAS DIFFICULT TO DEVELOP	0	BUILDING SETBACKS FRONT	50'	> 50'
WETLANDS	88,453 SF	SIDE	30' MIN. 75' COMBINED	≥ 30'
FLOOD PLAIN	0	REAR	75'	≥ 75'
RIGHTS OF WAY OR EASEMENTS	0	OPEN SPACE	25%	32.5%
RESOURCE PROTECTION DISTRICTS	0			1
NET RESIDENTIAL ACREAGE	920,584 SF			
ALLOWABLE DENSITY	60,000 SF/LOT			
ALLOWABLE # OF LOTS	15.3 LOTS			

<u>NOTES:</u>

- 1. WETLAND, STREAM, AND VERNAL POOL DELINEATION WAS CONDUCTED BY TRC SOLUTIONS IN MAY 2017.
- 2. SURVEY PREPARED BY TITCOMB ASSOCIATES IN SEPTEMBER 2017.
- 3. THE SITE IS SHOWN ON ASSESSOR'S MAP R08, LOT 59 B, AND IS LOCATED IN THE RURAL RESIDENTIAL DISTRICT (RR2).
- 4. COORDINATE ELECTRIC SERVICE WITH CMP.
- 5. TRANSFORMER AND PULL BOX FINAL LOCATIONS TO BE DETERMINED UPON REVIEW FROM CMP.
- 6. LOTS SHALL HAVE INDIVIDUAL SUBSURFACE WASTEWATER DISPOSAL SYSTEMS.
- 7. LOTS SHALL HAVE INDIVIDUAL WELLS FOR WATER SUPPLY.
- 8. THE PARCEL IS NOT LOCATED WITHIN A 100-YEAR FLOOD PLAIN.
- 9. ALL RESIDENTIAL BUILDINGS CONSTRUCTED WITHIN THIS SUBDIVISION SHALL BE EQUIPPED WITH AUTOMATIC FIRE CONTROL SPRINKLERS IN ACCORDANCE WITH CHAPTER 96 ARTICLE II OF THE TOWN OF CUMBERLAND ORDINANCE.
- 10. SEPTIC SYSTEM TEST PITS COMPLETED BY DAVE CHAPMAN WITH SEBAGO TECHNICS IN OCTOBER 2017.

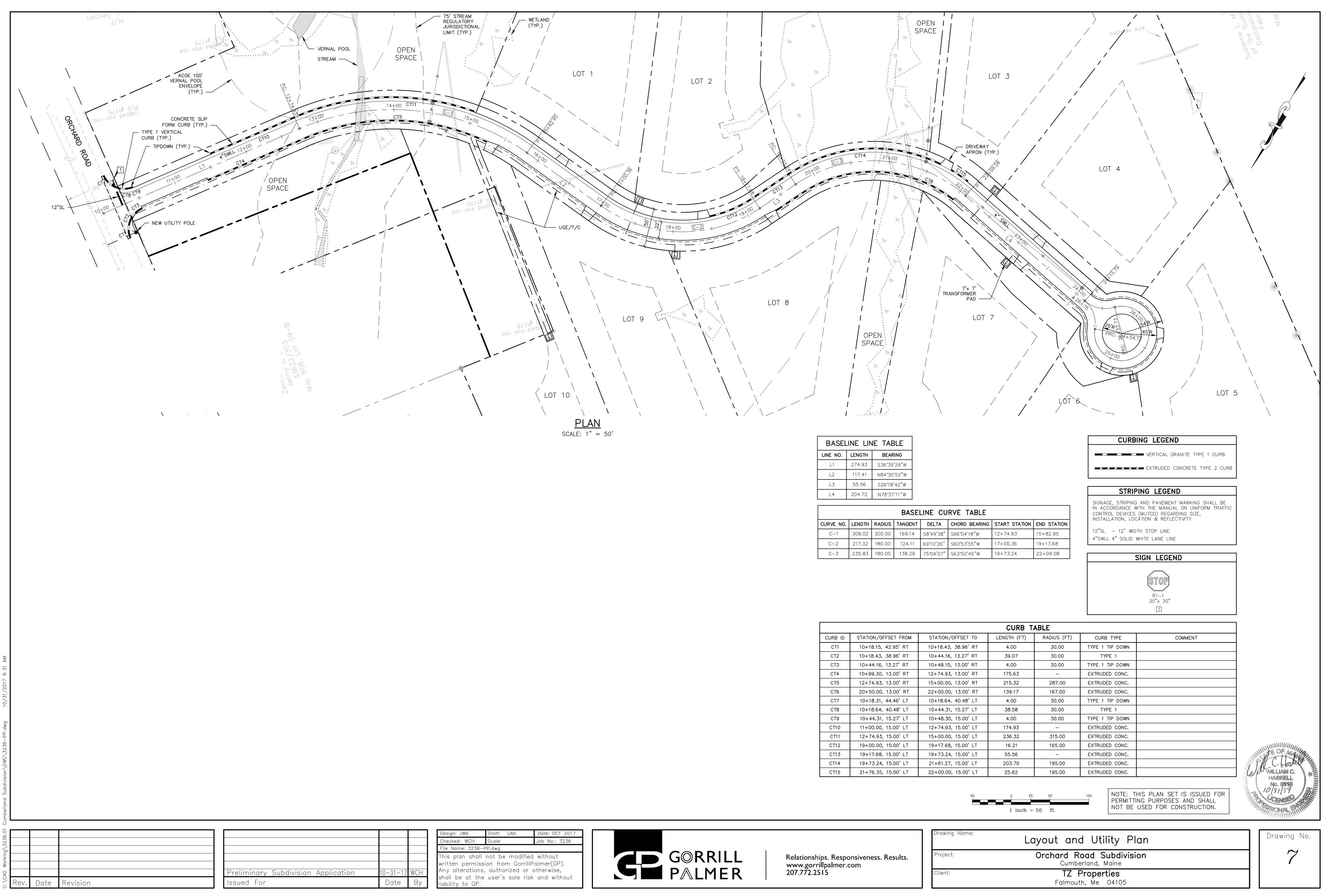


80	ò	40	80	16
	1 :	inch = 80) ft.	

NOTE: THIS PLAN SET IS ISSUED FOR PERMITTING PURPOSES AND SHALL NOT BE USED FOR CONSTRUCTION.

Drawing Name.	Overall Layout and Utility Plan	Drawing No.
Project:	Orchard Road Subdivision Cumberland, Maine	5
Client:	TZ Properties Falmouth, Me 04105	

160

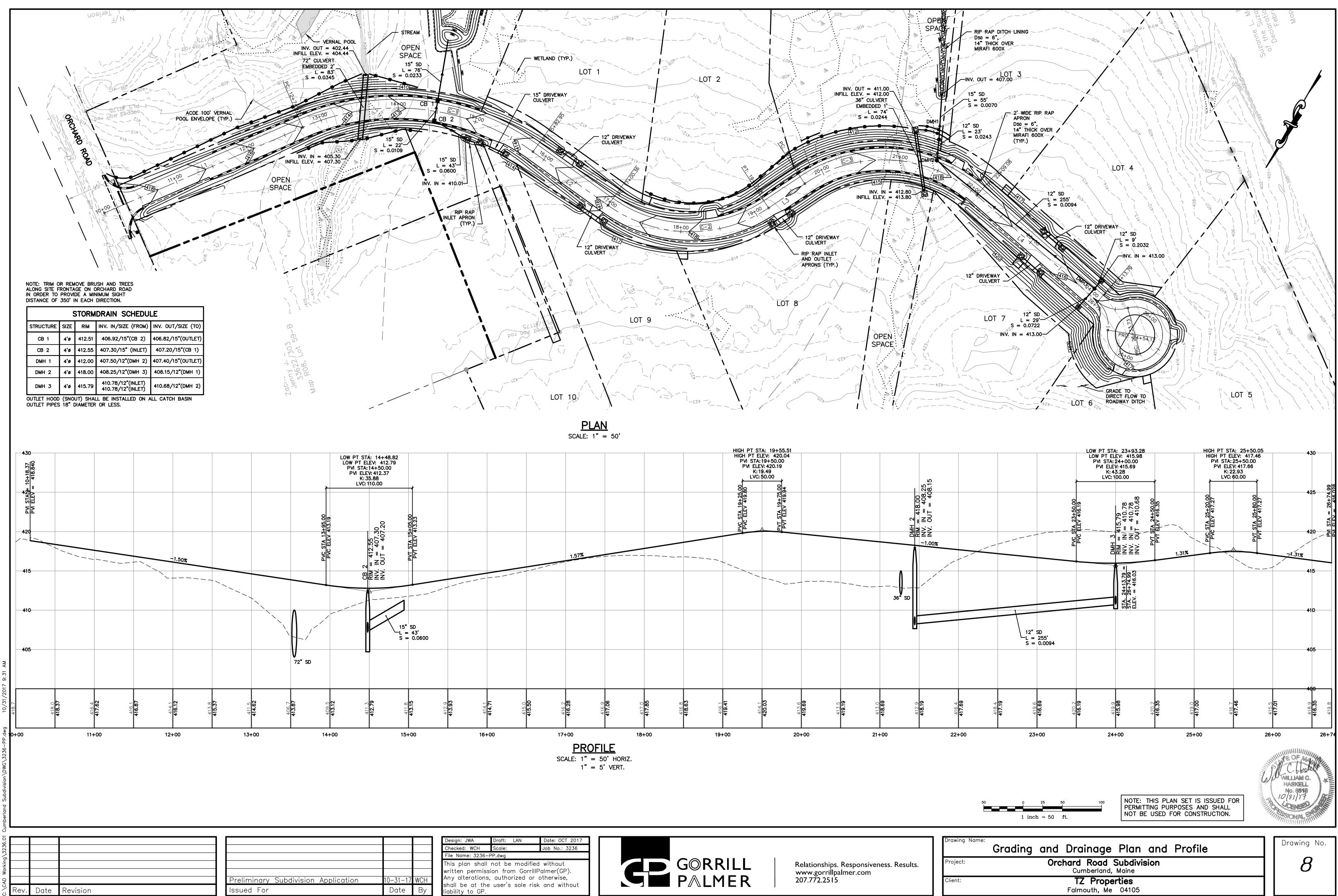

Design: JWA	Draft: LAN	Date: OCT 2017
Checked: WCH	Scale:	Job No.: 3236
File Name: 3236-0	GRADING.dwg	
written permissi Any alterations,	not be modified on from GorrillP authorized or o user's sole risk	almer(GP). otherwise,

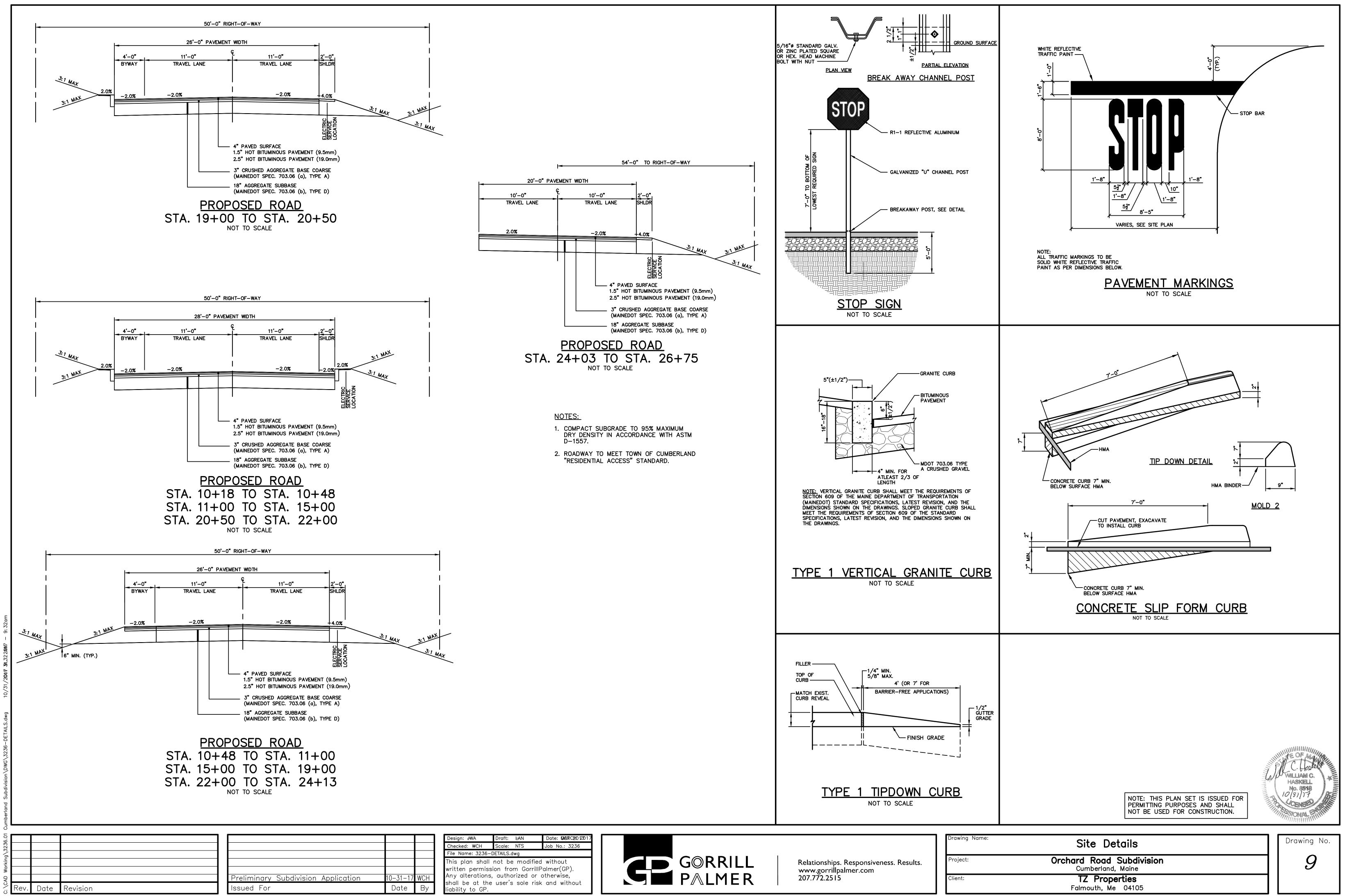
lient:

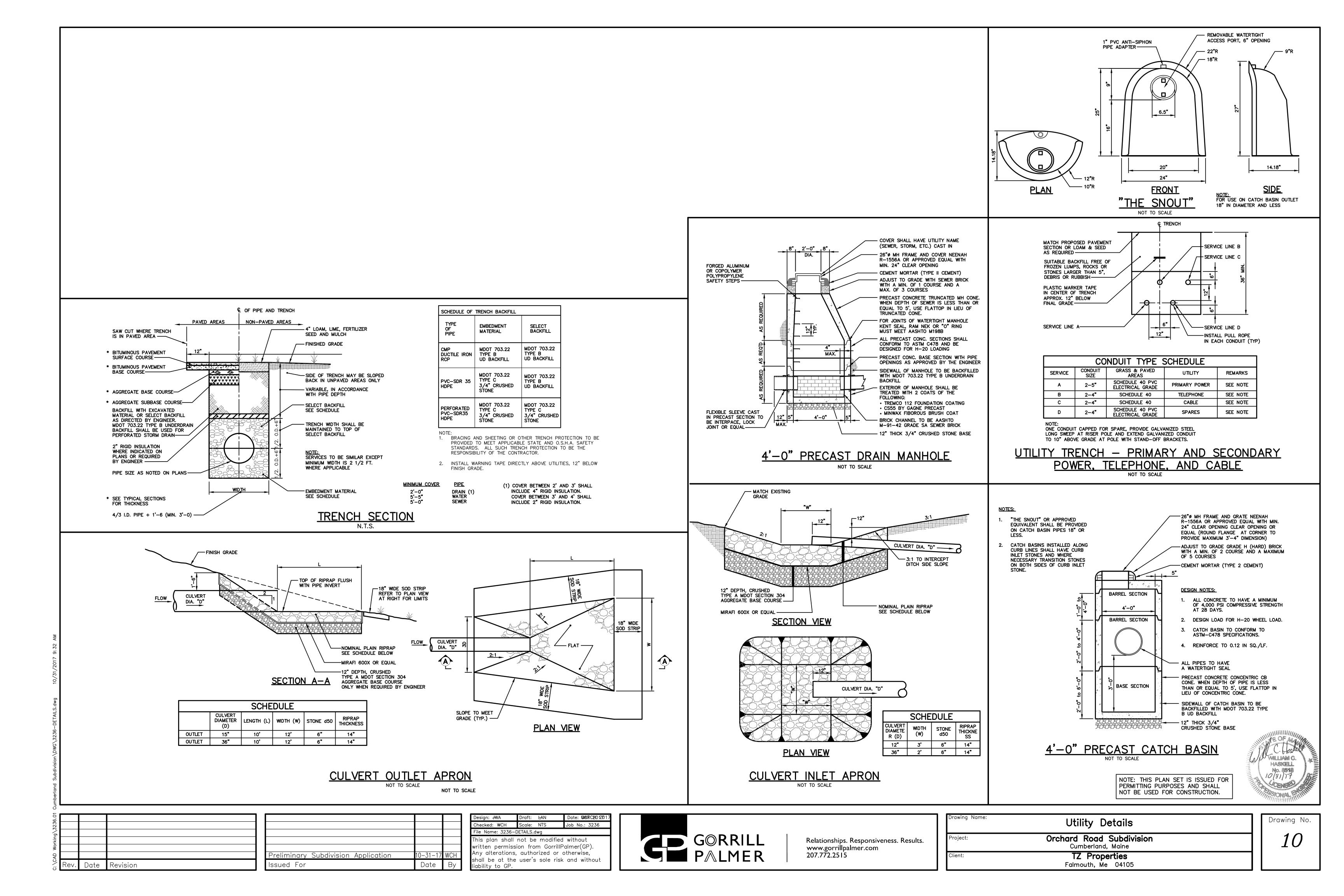
NOTE: THIS PLAN SET IS ISSUED FOR PERMITTING PURPOSES AND SHALL NOT BE USED FOR CONSTRUCTION.	E OF A C-HOULDAN WILLIAM C. HASKELL No. 8518 10 (3) []77 CENSED SOMAL
Drawing Name: Overall Grading,Drainage and Erosion Control Plan Project: Orchard Road Subdivision	Drawing No.
Project: Orchard Road Subdivision	

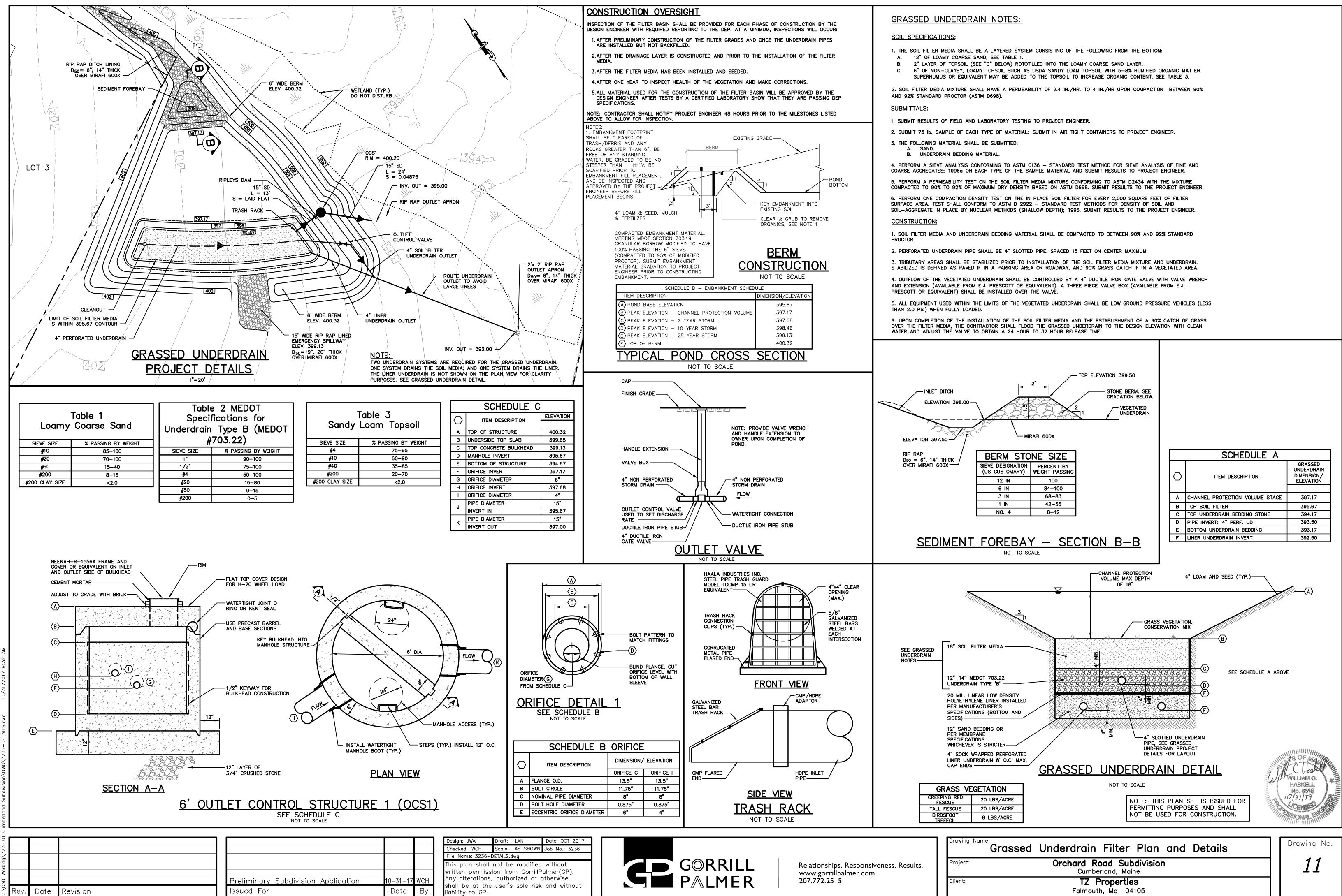
TZ Properties

Falmouth, Me 04105

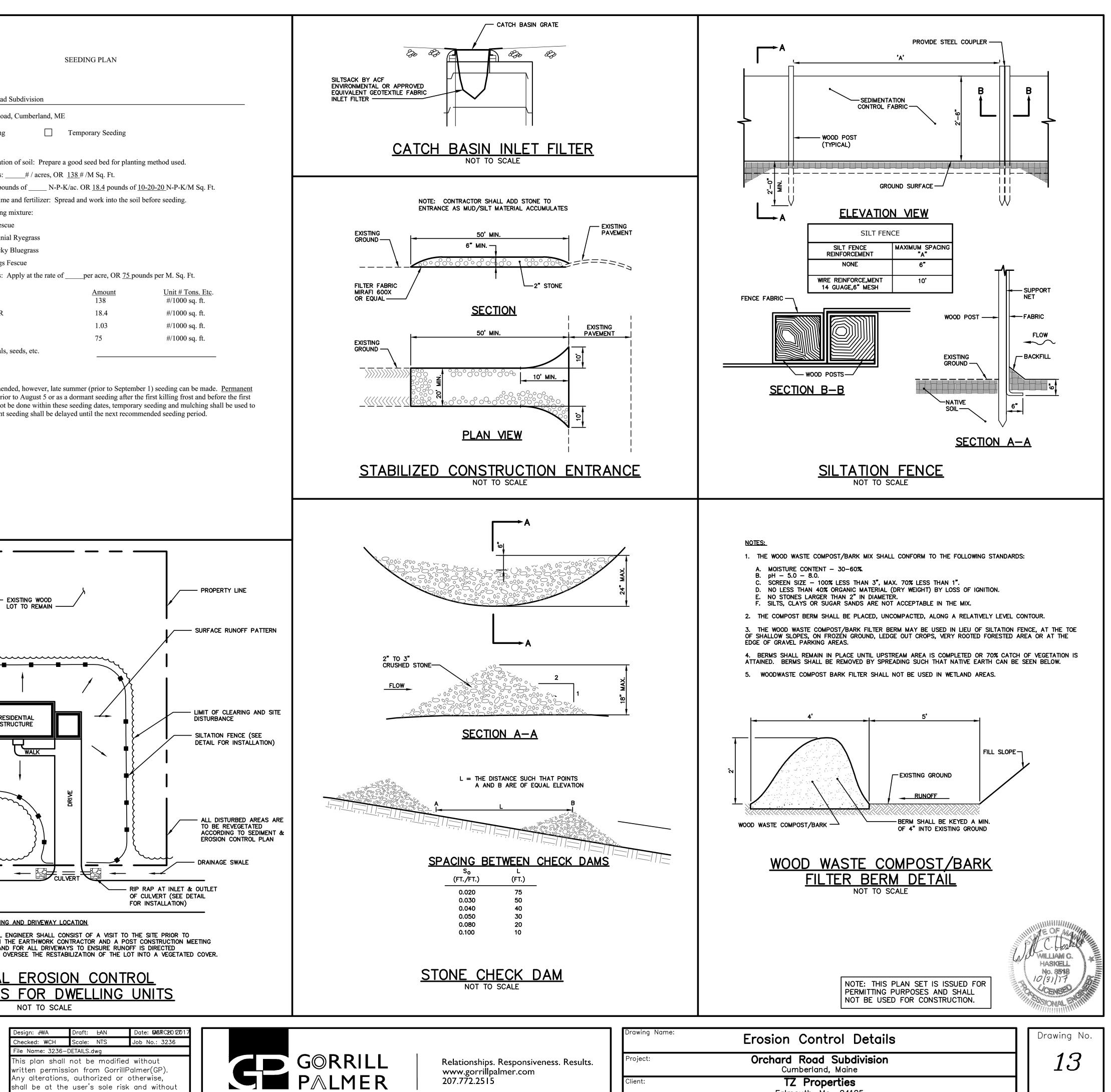



BASELINE LINE TABLE			
LINE NO.	LENGTH	BEARING	
L1	274.93	S36°39'29"W	
L2	117.41	N84°30'52"W	
L3	55.56	S26°18'42"W	
L4	204.72	N78°37'11"W	
		•	


			BASE
CURVE NO.	LENGTH	RADIUS	TANGENT
C-1	308.02	300.00	169.14
C-2	217.32	180.00	124.11
C-3	235.83	180.00	138.29


CURB ID	STATION/OFFSET FROM
CT1	10+18.15, 42.95'RT
CT2	10+18.43, 38.96'RT
CT3	10+44.16, 13.27' RT
CT4	10+99.30, 13.00'RT
CT5	12+74.93, 13.00' RT
CT6	20+50.00, 13.00'RT
CT7	10+18.31, 44.46'LT
CT8	10+18.64, 40.48' LT
CT9	10+44.31, 15.27'LT
CT10	11+00.00, 15.00' LT
CT11	12+74.93, 15.00' LT
CT12	19+00.00, 15.00' LT
CT13	19+17.68, 15.00'LT
CT14	19+73.24, 15.00' LT
CT15	21+76.35, 15.00'LT

Design: JWA	Draft: LAN	Date: OCT 2017
Checked: WCH	Scale:	Job No.: 3236
File Name: 3236-F	PP.dwg	
This plan shall	not be modified	without
written permiss	ion from GorrillP	almer(GP).
	authorized or a	
	user's sole risk	and without
liability to GP.		



2	SEEDING PLAN			
Project: Orchard Road Subdivision				Project: Orchard Ro
Site Location: Orchard Road, Cumberland, ME				Site Location: Orchard R
Permanent Seeding	Temporary Seeding			Permanent Seedin
 Instruction on preparation of soil: Prepare a Apply lime as follows:# / acres, OR Fertilize with pounds of N-P-K Method of applying lime and fertilizer: Spre Seed with the following mixture: 50% Winter Rye 50% Annual Rye 	<u>138</u> # /M Sq. Ft. X/ac. OR <u>13.8</u> pounds of	<u>10-10-10</u> N-P-K/M Sq. Ft.		 Instruction on prepara Apply lime as follows Fertilize with1 Method of applying 1 Seed with the follows 40% Creeping Red Fertilize 30% Charger II Perend
 Mulching instructions: Apply at the rate of . 	per acre, OR <u>75 p</u> o	unds per M. S.a. Et		20% KenBlue Kentuc 10% Tiffany Chewing
o. Whitening instructions. Apply at the face of	<u>Amount</u>	<u>Unit # Tons. Etc</u> .		6. Mulching instructions
7. TOTAL LIME	138	#/1000 sq. ft.		
8. TOTAL FERTILIZER	13.8	#/1000 sq. ft.		7. TOTAL LIME
9. TOTAL SEED	1.03	#/1000 sq. ft.		8. TOTAL FERTILIZE
10. TOTAL MULCH	75	#/1000 sq. ft.		9. TOTAL SEED
 TOTAL other materials, seeds, etc. DEMARKS 				10. TOTAL MULCH
12. REMARKS				 11. TOTAL other materia 12. REMARKS
snowfall. If seeding cannot be done within these protect the site. Permanent seeding shall be dela				seeding should be made p snowfall. If seeding cann protect the site. Permaner
				ROADWAY
			IN	ROADWAY SPECTION NOTES FOR LOT GAR SPECTIONS BY A PROFESSIONA
			IN	ROADWAY SPECTION NOTES FOR LOT GAE SPECTIONS BY A PROFESSIONA ONSTRUCTION TO CONSULT WITH O CONFIRM GRADING ON LOTS CORDINGLY TO PLANS AND TO
			IN	ROADWAY SPECTION NOTES FOR LOT GAD SPECTIONS BY A PROFESSIONAL ONSTRUCTION TO CONSULT WITH O CONFIRM GRADING ON LOTS A CONFIRM GRADING ON LOTS A CONFIRM GRADING ON LOTS A
			IN	ROADWAY SPECTION NOTES FOR LOT GAD SPECTIONS BY A PROFESSIONA ONSTRUCTION TO CONSULT WITH O CONFIRM GRADING ON LOTS A CORDINGLY TO PLANS AND TO
		Preliminary Subdivis		SPECTION NOTES FOR LOT GAD SPECTIONS BY A PROFESSIONAL INSTRUCTION TO CONSULT WITH CONFIRM GRADING ON LOTS A CORDINGLY TO PLANS AND TO <u>TYPICA</u> <u>MEASURE</u>

iability to GP.

Falmouth, Me 04105

1.3.5	Erosion	Control	Measures	and	Site	Stabilization

The primary emphasis of the erosion/sedimentation control plan, which will be implemented for this project, is as follows:

• Development of a careful construction sequence.

- Rapid revegetation of denuded areas to minimize the period of soil exposure.
- Rapid stabilization of drainage paths to avoid rill and gully erosion.
- The use of on-site measures to capture sediment (hay bales/ stone check dams/silt fence, etc.)

The following temporary and permanent erosion and sediment control devices will be implemented as part of the site development. These devices shall be installed as indicated on the plans or as described within this report. For further reference, see the latest edition of the Maine Erosion and Sediment Control Practices Field Guide for Contractors.

A. <u>Dewatering</u>

Water from construction trench dewatering shall pass first through a filter bag or secondary containment structure (e.g. hay bale lined pool) prior to discharge. The discharge site shall be selected to avoid flooding, icing, and sediment discharges to a protected resource. In no case shall the filter bag or containment structure be located within 50 feet of a protected natural resource. B. Inspection and Monitoring

Maintenance measures shall be applied as needed during the entire construction season. After each rainfall, snow storm or period of thawing and runoff, the site contractor shall perform a visual inspection of all installed erosion control measures and perform repairs as needed to insure their continuous function. Following the temporary and/or final seeding and mulching, the contractor shall in the spring inspect and repair any damages and/or unestablished spots. Established vegetative cover means a minimum of 90% of areas vegetated with vigorous growth.

The following standards must be met during construction.

(a) Inspection and corrective action. Inspect disturbed and impervious areas, erosion control measures, materials storage areas that are exposed to precipitation, and locations where vehicles enter or exit the site. Inspect these areas at least once a week as well as before and within 24 hours after a storm event (rainfall), and prior to completing permanent stabilization measures. A person with knowledge of erosion and stormwater control, including the standards and conditions in the permit, shall conduct the inspections.

(b) Maintenance. If best management practices (BMPs) need to be repaired, the repair work should be initiated upon discovery of the problem but no later than the end of the next workday. If additional BMPs or significant repair of BMPs are necessary, implementation must be completed within 7 calendar days and prior to any storm event (rainfall). All measures must be maintained in effective operating condition until areas are permanently stabilized.

(c) Documentation. Keep a log (report) summarizing the inspections and any corrective action taken. The log must include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and maintenance of erosion and sedimentation controls, materials storage areas, and vehicles access points to the parcel. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and location(s) where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken.

The log must be made accessible to MDEP and Town of Cumberland staff and a copy must be provided upon request. The permittee shall retain a copy of the log for a period of at least three years from the completion of permanent stabilization.

C. <u>Temporary Erosion Control Measures</u>

The following measures are planned as temporary erosion/sedimentation control measures during construction:

1. Crushed stone-stabilized construction entrance shall be placed at the entrance from Orchard Road.

2. Siltation fence or wood waste compost berms shall be installed downstream of any disturbed areas to trap runoff- borne sediments until grass areas are revegetated. The silt fence and/or wood waste compost berms shall be installed per the details provided in this package and inspected at least once a week and before and immediately after a storm event of 0.5 inches or greater, and at least daily during prolonged rainfall. Repairs shall be made if there are any signs of erosion or sedimentation below the fence or berm line. If there are signs of undercutting at the center or the edges, or impounding of large volumes of water behind the fence or berm, the barrier shall be replaced with a stone check dam. Wood waste compost berms are not to be used adjacent to wetland areas that are not to be disturbed.

3. Straw or hay mulch including hydroseeding is intended to provide cover for denuded or seeded areas until revegetation is established. Mulch placed between April 15th and October 15th on slopes of less then 15 percent shall be anchored by applying water; mulch placed on slopes of equal to or steeper than 15 percent shall be covered by a fabric netting and anchored with staples in accordance with manufacturer's recommendation. Fabric netting and staples shall be used on disturbed areas within 50' of lakes, streams, and wetlands regardless of the upstream slope. Mulch placed between October 15th and April 15th on slopes equal to or steeper than 8 percent shall be covered with a fabric netting and anchored with staples in accordance with the manufacturer's recommendations. Slopes steeper than 3:1 and equal to or flatter than 2:1, which are to be revegetated, shall receive curlex blankets by American Excelsior or equal. Slopes steeper than 2:1 shall receive riprap as noted on the plans. The mulch application rate for both temporary and permanent seeding is 75 lbs per 1000 sf as identified in the seeding plan. Mulch shall not be placed over snow.

4. Temporary stockpiles of stumps, grubbings, or common excavation will be protected as follows:

a) Temporary stockpiles shall not be located within 100 feet of any wetlands which will not be disturbed and shall be located away from drainage swales.

b) Stockpiles shall be stabilized within 7 days by either temporarily seeding the stockpile by a hydroseed method containing an emulsified mulch tackifier or by covering the stockpile with mulch, such as hay, straw, or erosion control mix.

c) Stockpiles shall be surrounded by sedimentation barrier at the time of formation.

5. All denuded areas that are within 100 feet of an undisturbed wetland, which have been rough graded and are not located within a building pad, parking area, or access drive subbase area, shall receive mulch or erosion control mesh fabric within 48 hours of initial disturbance of soil. All areas within 100 feet of an undisturbed wetland shall be mulched prior to any predicted rain event regardless of the 48 hour window. In other areas, the time period may be extended to 7 days.

6. For work, which is conducted between October 15th and April 15th of any calendar year, all denuded areas, shall be covered with hay mulch or erosion control mix, applied at twice the normal application rate and anchored with a fabric netting. The time period for applying mulch shall be limited to 2 days for all areas.

7. Orchard Road shall be swept to control mud and dust as necessary. Additional stone shall be added to the stabilized construction entrance to minimize the tracking of material off the site and onto the surrounding roadways.

8. During grubbing operations stone check dams shall be installed at any evident concentrated flow discharge points and as directed on the Erosion Control Plans.

9. Silt fencing with a minimum stake spacing of 6 feet shall be used, unless the fence is supported by wire fence reinforcement of minimum 14 gauge and with a maximum mesh spacing of 6 inches, in which case stakes may be spaced a maximum of 10 feet apart. The bottom of the fence shall be anchored. A double row of silt fence shall be used adjacent to wetlands.

10. Wood waste compost/bark berms may be used in lieu of siltation fencing. Berms shall be removed and spread in a layer not to exceed 3" thick once upstream areas are completed and a 90% catch of vegetation is attained.

11. Storm drain catch basin inlet protection shall be provided through the use of stone sediment barriers or approved sediment bags (such as Silt Sack). Installation details are provided in the plan set. The barriers shall be inspected after each rainfall and repairs made as necessary. Sediment shall be removed and the barrier restored to its original dimensions when the sediment has accumulated to ½ the design depth of the barrier. The barrier shall be removed when the tributary drainage area has been stabilized.

12. Water and/or calcium chloride shall be furnished and applied in accordance with MDOT specifications - Section 637 - Dust Control.

13. Loam and seed is intended to serve, as the primary permanent revegetative measure for all denuded areas not provided with other erosion control measures, such as riprap. Application rates are provided in the seeding plan. Seeding shall not occur over snow.

Permanent Erosion Control Measures

The following permanent erosion control measures have been designed as part of the Erosion/Sedimentation Control Plan:

1. All areas disturbed during construction, but not subject to other restoration (paving, riprap, etc.) will be loamed, limed, fertilized, mulched, and seeded. Fabric netting, anchored with staples, shall be placed over the mulch in areas as noted in Temporary Erosion Control Measures paragraph 3 of this report. All areas within 100 feet of an undisturbed wetland shall be mulched prior to any predicted rain event regardless of the 48 hour window. Native topsoil shall be stockpiled and reused for final restoration when it is of sufficient quality.

2. All storm drain pipe outlets shall have riprap aprons at their outlet to protect the outlet and receiving channel from scour and deterioration. Installation details are provided in the plan set. The aprons shall be installed and stabilized to the extent practicable prior to directing runoff to the tributary pipe or culvert.

3. Catch basins shall be provided with sediment sumps and inlet hoods (the Snout) for all outlet pipes that are 18" in diameter or less. 4 Implementation Schedule

the disturbed area.

The following construction sequence shall be required to insure the effectiveness of the erosion and sedimentation control measures are optimized: It is anticipated that construction of the Subdivision roadway and related infrastructure will commence in Spring of 2018 and be completed by

Winter of 2018. Note: For all grading activities, the contractor shall exercise extreme caution not to overexpose the site, this shall be accomplished by limiting

1. Install stabilized construction entrance at the intersection of the proposed roadway and Orchard Road.

2. Install perimeter silt fence and/or wood waste berms prior to grubbing respective areas.

3. Clear and grub roadway and stormwater management areas using caution not to overexpose the site. Install stone check dams at any evident concentrated flow discharge points.

1.	Commence	earthwork	and	grading	to	subgrade.

			Preliminary Subdivision Application	10-31-17
Rev.	Date	Revision	Issued For	Date

5. Commence installation of drainage appurtenances.

- 6. Commence construction grassed underdrained soil filter.
- 7. Commence installation of electric/cable/telephone lines.
- 8. Complete remaining earthwork operations.
- 9. Complete installation of catch basins and appurtenances.
- 10. Install sub-base and base gravel within roadway.
- 11. Install curbing along the streets as needed.
- 12. Install base course paving for roadway.
- 13. Loam, lime, fertilize, seed and mulch disturbed areas.
- 14. Install surface course paving for roadway. Stripe per plan.
- 15. Once the site is stabilized and a 90% catch of vegetation has been obtained, remove all temporary erosion control measures. 16. Touch up loam and seed.
- Note: All denuded areas not subject to final paving, riprap, or gravel shall be revegetated.

Prior to construction of the project, the contractor shall submit to the owner a schedule for the completion of the work, which will satisfy the following criteria:

The above construction sequence should generally be completed in the specified order; however, several separate items may be constructed simultaneously. Work must also be scheduled or phased to reduce the extent of the exposed areas as specified below. The intent of this sequence is to provide for erosion control and to have structural measures such as silt fence and construction entrances in place before large areas of land are denuded.

2. The work shall be conducted in sections which shall:

a) Limit the amount of exposed area to those areas in which work is expected to be undertaken during the proceeding 30 days.

b) Revegetate disturbed areas as rapidly as possible. All areas shall be permanently stabilized within 7 days of final grading or before a storm event; or temporarily stabilized within 48 hours of initial disturbance of soil for areas within 100 feet of an undisturbed wetland and 7 days for all other areas. Areas within 100 feet of an undisturbed wetland shall be mulched prior to any predicted rain event regardless of the 48 hour window.

c) Incorporate planned inlets and drainage system as early as possible into the construction phase. The ditches shall be immediately lined or reveaetated as soon as their installation is complete.

1.5 Erosion, Sedimentation and Stabilization Control Plan

The Erosion Control Plan is included in the plan set.

1.6 Details and Specifications

The Erosion Control details and specifications are included in the plan set.

1.7 Winter Stabilization Plan

The winter construction period is from November 1 through April 15. If the construction site is not stabilized with pavement, a road gravel base. 75% mature vegetation cover or riprap by November 15 then the site needs to be protected with over-winter stabilization. An area considered open is any area not stabilized with pavement; vegetation, mulching, erosion control mats, riprap or gravel base on a road.

Winter excavation and earthwork shall be completed such that any area left exposed can be controlled by the contractor. Limit the exposed area to those areas in which work is expected to be under taken during the proceeding 15 days and that can be mulched in one day prior to any snow event.

All areas shall be considered to be denuded until the subbase gravel is installed in roadway/parking areas or the areas of future loam and seed have been loamed, seeded and mulched. Hay and straw mulch rate shall be a minimum of 150 lbs./1,000 s.f. (3 tons/acre) and shall be properly anchored.

The contractor shall install any added measures which may be necessary to control erosion/sedimentation from the site dependent upon the actual site and weather conditions. Continuation of earthwork operations on additional areas shall not begin until the exposed soil surface on the area being worked has been stabilized, in order to minimize areas without erosion control protection.

<u>Soil Stockpiles</u>

Stockpiles of soil or subsoil shall be mulched for over winter protection with hay or straw at twice the normal rate or at 150 lbs/1,000 s.f. (3 tons per acre) or with a four—inch layer of woodwaste erosion control mix. This shall be done within 24 hours of stocking and re—established prior to any rainfall or snowfall. Any soil stockpile shall not be placed (even covered with hay or straw) within 100 feet from any natural resources.

Natural Resource Protection

Any areas within 100 feet from any natural resources, if not stabilized with a minimum of 75% mature vegetation catch, shall be mulched by December 1 and anchored with plastic netting or protected with erosion control mats. During winter construction, a double line of sediment barriers (i.e. silt fence backed with hay bales or erosion control mix) shall be placed between any natural resource and the disturbed area. Projects crossing the natural resource shall be protected a minimum distance of 100 feet on either side from the resource. Existing projects not stabilized by December 1 shall be protected with the second line of sediment barrier to ensure functionality during the spring thaw and rains.

3. <u>Sediment Barriers</u>

During frozen conditions, sediment barriers shall consist of woodwaste filter berms as frozen soil prevents the proper installation of hay bales and sediment silt fences.

4. <u>Mulching</u>

An area shall be considered denuded until areas of future loam and seed have been loamed, seeded and mulched. Hay and straw mulch shall be applied at a rate of 150 lb. per 1,000 square feet or 3 tons/acre (twice the normal accepted rate of 75-lbs./1,000 s.f. or 1.5 tons/acre) and shall be properly anchored. Mulch shall not be spread on top of snow. The snow shall be removed down to a one-inch depth or less prior to application. After each day of final grading, the grea shall be properly stabilized with anchored hay or straw or erosion control matting. An area shall be considered to have been stabilized when exposed surfaces have been either mulched with straw or hay at a rate of 150 lb. per 1,000 square feet (3 tons/acre) and adequately anchored that ground surface is not visible though the mulch.

Between the dates of November 1 and April 15, all mulch shall be anchored by peg line, mulch netting, asphalt emulsion chemical, or wood cellulose fiber. When ground surface is not visible through the mulch then cover is sufficient. After November 1st, mulch and anchoring of all bare soil shall occur at the end of each final grading workday.

Mulching on Slopes and Ditches

Slopes shall not be left exposed for any extended time of work suspension unless fully mulched and anchored with peg and netting or with erosion control blankets. Mulching shall be applied at a rate of 230 lbs/1,000 s.f. on all slopes greater than 8%.

Mulch netting shall be used to anchor mulch in all drainage ways with a slope greater than 3% for slopes exposed to direct winds and for all other slopes greater that 8%. Erosion control blankets shall be used in lieu of mulch in all drainage ways with slopes greater than 8%. Erosion control mix can be used to substitute erosion control blankets on all slopes except ditches.

<u>Seeding</u> Between the dates of October 15 and April 1st, loam or seed will not be required. During periods of above freezing temperatures finished areas shall be fine graded and either protected with mulch or temporarily seeded and mulched until such time as the final treatment can be applied. If the date is after November 1st and if the exposed area has been loamed, final graded with a uniform surface, then the area may be dormant seeded at a rate of 3 times higher than specified for permanent seed and then mulched. Dormant seeding may be selected to be placed prior to the placement of mulch and fabric netting anchored with staples. If dormant seeding is used for the site, all disturbed areas shall receive 4" of loam and seed at an application rate of 5 lbs/1,000 s.f. All areas seeded during the winter shall be inspected in the spring for adequate catch. All areas insufficiently vegetated (less than 75% catch) shall be revegetated by replacing loam, seed and mulch. If dormant seeding is not used for the site, all disturbed areas shall be revegetated in the spring.

Standards for Timely Stabilization of Construction Sites During Winter

Standard for the timely stabilization of ditches and channels —— The applicant shall construct and stabilize all stone—lined ditches and channels on the site by November 15. The applicant shall construct and stabilize all arass-lined ditches and channels on the site by September 1. If the applicant fails to stabilize a ditch or channel to be grass-lined by September 1, then the applicant will take one of the following actions to stabilize the ditch for late fall and winter.

Install a sod lining in the ditch -- The applicant shall line the ditch with properly installed sod by October 1. Proper installation includes the applicant pinning the sod onto the soil with wire pins, rolling the sod to guarantee contact between the sod and underlying soil, watering the sod to promote root growth into the disturbed soil, and anchoring the sod with jute or plastic mesh to prevent the sod strips from sloughing during flow conditions.

Install a stone lining in the ditch ——The applicant shall line the ditch with stone riprap by November 15. The applicant shall hire a registered professional engineer to determine the stone size and lining thickness needed to withstand the anticipated flow velocities and flow depths within the ditch. If necessary, the applicant shall regrade the ditch prior to placing the stone lining so to prevent the stone lining from reducing the ditch's cross—sectional area.

2. Standard for the timely stabilization of disturbed slopes -- The applicant shall construct and stabilize stone-covered slopes by November 15. The applicant shall seed and mulch all slopes to be vegetated by September 1. The department shall consider any area having a grade greater than 15% to be a slope. If the applicant fails to stabilize any slope to be vegetated by September 1, then the applicant shall take one of the following actions to stabilize the slope for late fall and winter.

Stabilize the soil with temporary vegetation and erosion control mats -- By September 1 the applicant shall seed the disturbed slope with winter rye at a seeding rate of 3 pounds per 1,000 square feet and apply erosion control mats over the mulched slope. The applicant shall monitor growth of the rye over the next 30 days. If the rye fails to grow at least three inches or cover at least 75% of the disturbed slope by November 1, then the applicant shall cover the slope with a layer of woodwaste compost as described in item iii of this standard or with stone riprap as described in item iv of this standard.

Date: 10161RC2+1012701 Draft: HAN Design: JWA Checked: ₩CH Scale: NTS Job No.: 3236 File Name: 3236-DETAILS.dwg his plan shall not be modified without written permission from GorrillPalmer(GP)

Any alterations, authorized or otherwise, shall be at the user's sole risk and without ability to GP.

Stabilize the slope with sod -- The applicant shall stabilize the disturbed slope with properly installed sod by September 1. Proper installation includes the applicant pinning the sod onto the slope with wire pins, rolling the sod to guarantee contact between the sod and underlying soil, and watering the sod to promote root growth into the disturbed soil. The applicant shall not use late-season sod installation to stabilize slopes Stabilize the slope with woodwaste compost -- The applicant shall place a six-inch layer of woodwaste compost on the slope by November 15. Prior to placing the woodwaste compost, the applicant shall remove any snow accumulation on the disturbed slope. The applicant shall not use woodwaste compost to stabilize slopes having grades greater than 50% (2H:1V) or having groundwater seeps on the slope face. Stabilize the slope with stone riprap -- The applicant shall place a layer of stone riprap on the slope by November 15. The applicant shall hire 3. Standard for the timely stabilization of disturbed soils -- By September 15 the applicant shall seed and mulch all disturbed soils on areas having a slope less than 15%. If the applicant fails to stabilize these soils by this date, then the applicant shall take one of the following actions to stabilize the soil for late fall and winter. Stabilize the soil with temporary vegetation -- By September 1 the applicant shall seed the disturbed soil with winter rye at a seeding rate of 3 pounds per 1000 square feet, lightly mulch the seeded soil with hay or straw at 75 pounds per 1000 square feet, and anchor the mulch with plastic netting. The applicant shall monitor growth of the rye over the next 30 days. If the rye fails to grow at least three inches or cover at least 75% of the disturbed soil before November 1, then the applicant shall mulch the area for over-winter protection as described below. Stabilize the soil with sod -- The applicant shall stabilize the disturbed soil with properly installed sod by September 15. Proper installation includes the applicant pinning the sod onto the soil with wire pins, rolling the sod to guarantee contact between the sod and underlying soil, and watering the sod to promote root growth into the disturbed soil. Stabilize the soil with mulch —— By November 15 the applicant shall mulch the disturbed soil by spreading hay or straw at a rate of at least 150 pounds per 1000 square feet on the area so that no soil is visible through the mulch. Prior to applying the mulch, the applicant shall netting to prevent wind from moving the mulch off the disturbed soil. The stormwater facilities will be maintained by the Applicant, TZ Properties, LLC or their assigned heirs. The contract documents will require the contractor to designate a person responsible for maintenance of the sedimentation control features during construction as required by the Erosion Control Report. Long-term operation/maintenance recommended for the stormwater facilities is presented below. The responsible party may contract with such professionals, as may be necessary in order to comply with this provision and may rely on the advice of such professionals in carrying out its duty hereunder, provided, that the following operation and maintenance procedures are hereby established as a minimum for compliance with this section. A maintenance log of the inspections shall be kept by the responsible party. Inspection and Maintenance Frequency and Corrective Measures: The following areas, facilities, and measures will be inspected and the identified deficiencies will be corrected. Clean-out must include the removal and legal disposal of any accumulated sediments and debris. Inspect catch basins 2 times per year (preferably in Spring and Fall) to ensure that the catch basins are working in their intended fashion and that they are free of debris. Clean structures when sediment depths reach 12" from invert of outlet. If the basin outlet is designed with a hood to trap floatable materials (i.e. Snout), check to ensure watertight seal is working. At a minimum, remove floating debris and hydrocarbons Culverts: Inspect culverts 2 times per year (preferably in Spring and Fall) to ensure that the culverts are working in their intended fashion and that they

1.8 <u>Maintenance of facilities</u>

having a grade greater than 33% (3H:1V). a registered professional engineer to determine the stone size needed for stability and to design a filter layer for underneath the riprap. remove any snow accumulation on the disturbed area. Immediately after applying the mulch, the applicant will anchor the mulch with plastic at the time of the inspection. are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris at the inlet, at the outlet, and within the

Catch Basins:

conduit and repair any erosion damage at the culvert's inlet and outlet.

Inlet/Outlet Control Structures Inspect structures and piping 2 times per year (preferably in Spring and Fall) to ensure that the structures are working in their intended fashion and that they are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris within the structure.

Stormdrain Outlets: Inspect outlets 2 times per year (preferably in Spring and Fall) to ensure that the outlets are working in their intended fashion and that they are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris at the outlet and within the conduit Repair any erosion damage at the stormdrain outlet.

Soil Filter - Bio-Filtration:

Inspect all upstream pre-treatment measures 2 times per year (preferably in Spring and Fall) for sediment and floatables accumulation. Remove and dispose of any sediments or debris.

Surface (Underdrain Pond, Swale or Bio-Filter): The soil filter will be inspected within the first three months after construction; thereafter the filter will be inspected 2 times per year (preferably in Spring and Fall) to ensure that the filter is draining within 24 to 48 hours of a rain event equivalent to 1" or more. Adjustments will be made to the outlet valve to ensure that the grassed underdrained soil filter drains within 24 to 48 hours. Failure to drain in 72 hours will require part or all of the soil filter media to be removed and replaced with new material meeting the soil filter aradation. The facilities will be inspected after major storms and any identified deficiencies will be corrected. Harvesting and weeding of excessive growth shall be performed as needed. Inspect for unwanted or invasive plants and remove as necessary.

Vegetated Areas: Inspect slopes and embankments early in the growing season to identify active or potential erosion problems. Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able t withstand the concentrated flows. The facilities will be inspected after major storms and any identified deficiencies will be corrected.

Ditches, Swales and other Open Stormwater Channels: Inspect 2 times per year (preferably in Spring and Fall) to ensure they are working in their intended fashion and that they are free of sediment and debris. Remove any obstructions to flow, including accumulated sediments and debris and vegetated growth. Repair any erosion of the ditch lining. Vegetated ditches will be mowed at least annually or otherwise maintained to control the growth of woody vegetation and maintain flow capacity. Any woody vegetation growing through riprap linings must also be removed. Repair any slumping side slopes as soon as practicable. If the ditch has a riprap lining, replace riprap on areas where any underlying filter fabric or underdrain gravel is showing through the stone or where stones have dislodged. Correct any erosion of the channel's bottom or sideslopes. The facilities shall be inspected after major storms and any identified deficiencies shall be corrected.

Roadways and Parking Surfaces: Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring. Accumulations on pavement may be removed by pavement sweeping. Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front—end loader. Repair potholes and other roadway obstructions and hazards. Plowing and sanding of paved areas shall be performed as necessary to maintain vehicular traffic safety.

<u>Recertification</u>

from the date of issuance of the permit.

(a) Identification and repair of erosion problems. All areas of the project site have been inspected for areas of erosion, and appropriate steps have been taken to permanently stabilize these areas. (b) Inspection and repair of stormwater control system. All aspects of the stormwater control system have been inspected for damage, wear, and malfunction, and appropriate steps have been taken to repair or replace the system, or portions of the system. (c) Maintenance. The erosion and stormwater maintenance plan for the site is being implemented as written, or modifications to the plan have been submitted to and approved by the department, and the maintenance log is being maintained. (d) Proprietary Systems. All proprietary systems have been maintained according to the manufacturer's recommendations. Where required by the Department, the permittee shall execute a 5-year maintenance contract with a qualified professional for the coming 5-year interval. The maintenance contract must include provisions for routine inspections, cleaning, and general maintenance.

Housekeeping

As part of the Stormwater Permit, the applicant is required to meet the standards in Appendix C of the Chapter 500 Rules. The following procedures are hereby established as a minimum for compliance with this section. For further information on the procedures listed below, refer to Chapter 500 rules - Appendix C.

Spill Prevention: Appropriate spill prevention, containment, and response planning/implementation shall be used to prevent pollutants from being discharged from materials on site.

Groundwater Protection which drain to an infiltration area.

Fugitive Sediment and Dust:

Debris and Other Materials:

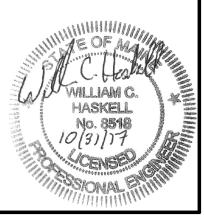
Trench or Foundation De-watering: natural wooded buffers or other areas that are specifically designed to collect the maximum amount of sediment possible.

Non-stormwater Discharges: Identify and prevent contamination

Relationships. Responsiveness. Results. www.gorrillpalmer.com 207.772.2515

As part of the Stormwater Permit, the applicant is required to meet the standards in Appendix B of the Chapter 500 Rules. Appendix B states that a project must submit a certification of the following to the department within three months of the expiration of each five-year interval

During construction, hazardous materials with the potential to contaminate groundwater shall not be stored or handled in areas of the site


Appropriate measures shall be taken to ensure that activities do not result in noticeable erosion of the soils and water and/or calcium chloride shall be used to ensure that activities do not result in fugitive dust emissions during or after construction.

Litter, construction debris, and chemicals exposed to stormwater must be prevented from becoming a pollutant source.

Water collected through the process of trenching and/or de—watering must be removed from the ponded area, and must be spread through

by non-stormwater discharges.	NOTE: THIS PLAN SET IS ISSUED FOR PERMITTING PURPOSES AND SHALL NOT BE USED FOR CONSTRUCTION.

Drawing Name:	Erosion Control Notes	Drawing No.
Project:	Orchard Road Subdivision Cumberland, Maine	14
Client:	TZ Properties Falmouth, Me 04105	

