Engineer's Recommendation Intersection of Gray Road \& Range Road Cumberland, Maine

Date: \quad August 16, 2023
Subject:
Intersection Evaluation and Recommendations
Gray Road \& Range Road

To: Bill Shane, P.E., Cumberland Town Manager
From: Randy Dunton, PE, PTOE - Gorrill Palmer

Introduction

The unsignalized intersection of Gray Road \& Range Road has a history of increasing crashes over the last five years with a significant increase in the \% injury. Currently, Range Road is 35 mph and is stop controlled with Gray Road being 50 mph and free flow conditions. MaineDOT has completed a very thorough review of the intersection including the potential impacts of converting the intersection from a two-way stopped controlled intersection to an all-way stop controlled intersection. This conversion includes; stop bars, additional signs (some with flags and some with LED lighting), and pavement markings.

Recommendation

Based on a review of the information provided by MaineDOT (see attached "Cumberland - Intersection of Gray Road \& Range Road, Background Safety / Mobility Analysis", dated July 6, 2023), and discussions with their safety office as well as the Region Traffic Engineer, I concur with the MaineDOT's recommendation that the intersection be converted from a two-way stop controlled intersection to an all-way stop controlled intersection as identified in the attached power point.

Attachments

Attachment A - MaineDOT power point presentation: "Cumberland - Intersection of Gray Road \& Range Road, Background Safety / Mobility Analysis", dated July 6, 2023

[^0]Page 2

Attachment A

MaineDOT Power Point

Cumberland Intersection of Gray Road \& Range Road

Background Safety/Mobility Analysis

July 6, 2023

SAFETY PROBLEMS

-TYPES OF CRASHES

- SEVERITY OF CRASHES
-SIGHT DISTANCE
-? (HAVEN'T BEEN ON FIELD VISIT YET ${ }_{\text {case2 }}$)

$\times a$

Crashes By Year

Year	Injury Crash Count	\% Injury				Number of Crashes
2013	0	0.00%		1	1	
2014	1	33.33%	1	2	3	
2015	2	40.00%	2	3	5	
2016	0	0.00%		1	1	
2017	0	0.00%		1	1	
2019	0	0.00%		2	2	
2020	2	66.67%	1	1	1	3
2021	2	66.67%	1	1	1	3
2022	3	75.00%	2	1	1	4
	Crash Count	4	6	13	23	

Injury Level

Route - MP	Section U/R Length		Total Crashes	K				A
	A	B	C	PD	Percent			
Injury								

Weather Condition

Road Surface Condition

Day of Week

Day of Week

Driver Age

Crash Type

HIGH SPEED ANGLE CRASH SEVERITY

"Angle" Crash Severity By Intersection Speed Limit

	Injury \%	K+A \%	K+A+B \%
25	2596%	0.98%	630%
30	43.5%	0.0%	17.4%
35	31.65%	2.01%	9.53%
40	34.25%	2.53%	11.96%
45	40.68%	4.38%	15.82%
50	45.27%	5.55%	18.28%
55	49.42%	6.26%	22.74%

THE INTERSECTION IS NOT A HIGH CRASH LOCATION (HCL) OR HAS HISTORY OF BEING HCL.

HCM AM Existing Conditions Delays (sec/veh)

Intersection									
Int Delay, s/veh	3.3								

ALTERNATIVES

-TRAFFIC SIGNAL - DID NOt meet any mutcd SIGNAL WARRANTS.

- ALL WAY STOP - met Warrant -IMPROVE INTERSECTION SIGHT DISTANCE

HOW AWS CAME TO BE CONSIDERED AS AN ALTERNATIVE?

- REVIEWED MAINE EXAMPLES
- HISTORICAL DATA
- RECENT EXAMPLES
- NATIONAL STUDIES
- NORTH CAROLINA MEETING/STUDY

ALL-WAY STOP LOCATIONS

OLDER EXAMPLE OF AWS

NEWER TYPE INSTALLATIONS

HISTORICAL MAINE BEFORE / AFTER

-CRASH REDUCTION $=\underline{45 \%}$

-INJURY CRASH REDUCTION = $\underline{52 \%}$
\cdot-CRASH COST REDUCTION $=54 \%$

NATIONAL CRASH REDUCTION CONVERT TWO-WAY TO ALL-WAY STOP CONTROL

-CRASH REDUCTION = 82\%/61 \% - INJURY CRASH REDUCTION = 87\%/72 \%

Safety Study Results (2010 Data)

- Safety study of over 50 intersections in NC converted from 2-way stop to AWS.
- The study included a diverse group of four-leg intersections converted to AWS in urban, suburban, and rural areas (included some locations outside of Spot Safety).
- Intersections with a range of volumes and approach speeds were included.
- The study was comprised of locations both with and without overhead and/or sign mounted flashing beacons.
- The overall results indicate a:

68\% Reduction in Total Crashes 77\% Reduction in Fatal and Injury Crashes 75\% Reduction in Frontal Impact Crashes

There appears to be an even greater crash reduction at higher speed (45-55 mph) AWS sites.

ncdot.gov

AWS Guidelines

Crash Severity (2020 Data)

36 AWS Spot Safety Projects at 4-leg Intersections with Before \& After Crash Data

Cost and Benefits (2020 Data)

36 AWS Spot Safety Projects at 4-leg Intersections with Before \& After Crash Data

BENEFITS: 26 Fatal \& Serious Injury Crashes reported before and NONE after.

COSTS: Median Installation Cost is roughly $\$ 20,000$

Never observed a Fatal Crash after AWS at ~100 intersections studied

Casco Conversion - Route 11 / Route 121

CONVERTED OCTOBER 2019

Casco Conversion - Route 11 / Route 121

CONVERTED OCTOBER 2019

CASCO 3-YEARS BEFORE

CASCO 3-YEARS AFTER

Durham Conversion - Route 125 / Quaker Meetinghouse Rd CONVERTED MARCH 2018

Durham Conversion - Route 125 / Quaker Meetinghouse Rd

CONVERTED MARCH 2018

DURHAM 3-YEARS BEFORE

DURHAM 3-YEARS AFTER

HCM AM Existing Conditions Delays (sec/veh)

Intersection									
Int Delay, s/veh	3.3								

All-Way Stop Forecast Delays (sec/veh)

PM Peak Hour 4:30 to 5:30

2023 AM DHV Hour 7:15-8:15

Intersection Delay, s/veh	12.5
Intersection LOS	

Lane	NBLn1	EBLn1	WBLn1	SBLn1
HCM Lane VIC Ratio	0.201	0.037	0.116	0.61
HCM Control Delay	9.2	9.1	9.1	14.1
HCM Lane LOS	A	A	A	B
HCM 95th-ile Q	0.7	0.1	0.4	4.3

Cumberland Route 26 \& Range Road B/C Analysis

Benefit-Cost Analysis

Alternative	Analysis Duration	Safety Benefit	Mobility Benefit	Net Benefit	Cost Estimate	Net Benefit-Cost
AWS	10 Years	$\$ 2,892,280$	$-\$ 175,450$	$\$ 2,716,830$	$\$ 20,000$	135.84

BENEFITS OF AN ALL-WAY STOP

- SIGNIFICANT REDUCTION IN TOTAL CRASHES.
- SIGNIFICANT REDUCTION IN INJURY CRASH SEVERITY.
- ZERO FATAL CRASHES AT AWS SINCE 2003.
- HIGH SAFETY BENEFIT / COST RATIO.
- VEHICLES ENTER THE INTERSECTION AT LOW SPEEDS.
- MINIMAL DELAY WITH EACH CONVERSION.

Crash Costs and Benefits of Intersection Alternatives

CHANGE INTERSECTION SIGHTDISTANCE
DESCRIPTION:
PRIOR CONDIIION: INTERSECTIONS WITH A BASESIGHT DISTANCE
CATEGORY:INIERSECTION GEOMETRY

STUDY: SAFETY EVAL UATION OF GEOMETRIC DESIGN CRITERIA: INTERSECTION SIGHT DISTANCE AT UNSIGNALIZED INTERSECTIONS, HIMESET AL., 2018

Crash Modification Factor (CMF)

$$
C M F_{T_{i}}=\frac{\exp \left(-0.021 \times P S L+\frac{7.194 \times P S L}{I S D_{i}}+\frac{-243.009 \times L^{2} A A A D T_{m a j}}{I S D_{i}}+\frac{-177.826 \times \text { MidAADT }_{m a j}}{I S D_{i}}\right)}{\exp \left(-0.021 \times P S L+\frac{7.194 \times P S L}{I S D_{\text {base }}}+\frac{-243.009 \times \text { LowAADT }_{m a j}}{I S D_{\text {base }}}+\frac{-177.826 \times \text { MidAADT }_{\text {maj }}}{I S D_{\text {base }}}\right)}
$$

where:
PSL = Posted speed (in mph),
$L O W A A D T_{m a j}=1$ if major road AADT $\leq 5,000$; otherwise 0 .
MidAADT $T_{m a j}=1$ if 5,000 < major road AADT $\leq 15,000$; otherwise 0.
$I S D_{i}=$ Proposed or existing available intersection sight distance for the condition of interest i (where $i=1$ for proposed condition and $i=2$ for existing condition) (in feet).
$I S D_{\text {base }}=$ Base intersection sight distance for an approach direction (in feet). For practical applications, this value is assumed to be 1,320 feet.

Cumberland Route 26 / Range Road			
Based on Posted Speed of 50			
Increasing Sight Distance from $\mathbf{3 0} \mathbf{~ m p h ~ t o ~} 50 \mathrm{mph}$			
		0.621	
		37.9\%	Crash Reduction
Posted Speed Limit	50		
Proposed Sight Distance	555		
Low AADT	0		
Mid AADT	0		
Existing Sight Distance	320		

Crash Costs and Benefits of Intersection Alternatives

[^0]: u:\3656.19_range @ route 100_cumberlandlengineers recommendation 8-16-23.docx

